Advertisement

Brazilian Journal of Microbiology

, Volume 50, Issue 1, pp 99–105 | Cite as

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric identification and antifungal susceptibility analysis of Candida species isolated from patients with invasive yeast infections in five university hospitals

  • Zhimin HuEmail author
  • Juling Zhang
  • Zhongju Chen
  • Zhengjiang Jin
  • Pei Leng
  • Junying Zhou
  • Xiaofang Xie
Clinical Microbiology - Research Paper

Abstract

In this multicenter study, we compared the performance of the Bruker Biotyper MS system and VITEK 2 YST systems for invasive yeast identification, investigated the distribution of isolated species, and evaluated the antifungal susceptibility profiles of Candida albicans, Candida parapsilosis, and Candida tropicalis. In cases of discrepant results lack of identification with either method, molecular identification techniques were employed. We tested 216 clinical isolates, and concordance between the two methods was observed for 192/216 isolates (88.9%). For five unidentified strains (2.3%), an internal transcribed spacer (ITS) sequencing approach was used. In brief, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) provided short turnaround times and more reliable results than those of Vitek 2 YST. In Wuhan, C. albicans, C. parapsilosis, Candida glabrata, and C. tropicalis were the most common pathogens (93.0%) in patients with candidemia. Cryptococcus neoformans was mainly detected in cerebrospinal fluid samples (88.9%). Trichosporon asahii were all isolated from drainage fluids in the Surgery. Candida albicans was clearly susceptible to azoles, while C. parapsilosis and C. tropicalis displayed differences in susceptibility to azoles. Our findings provide a basis for the practical application of MALDI-ToF MS for identification and for the use of ATB FUNGUS 3 to characterize the susceptibility of Candida spp., thereby providing significant data for therapeutic decisions.

Keywords

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry Candida Yeast Identification Antifungal susceptibility test 

Notes

Funding

This study was supported by the Hubei Province health and family planning scientific research project (Grant No. WJ2015MB239), Wuhan health and family planning scientific research project (Grant No. WX18A06), and Wuhan scientific and technology research project (Grant No. 200960638293).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Denning DW, Kibbler CC, Barnes RA (2003) British Society for Medical Mycology proposed standards of care for patients with invasive fungal infections. Lancet Infect Dis 3:230–240CrossRefGoogle Scholar
  2. 2.
    Miceli MH, Diaz JA et al (2011) Emerging opportunistic yeast infections. Lancet Infect Dis 11:142–151CrossRefGoogle Scholar
  3. 3.
    Schelenz S, Barnes RA, Barton RC, Cleverley JR, Lucas SB, Kibbler CC, Denning DW (2015) British Society for Medical Medical Mycology best practice recommendations for the diagnosis of serious fungal diseases. Lancet Infect Dis 15:461–474CrossRefGoogle Scholar
  4. 4.
    Tuite NL, Lacey K (2013) Overview of invasive fungal infections. Methods Mol Biol 968:1–23CrossRefGoogle Scholar
  5. 5.
    Wang H, Xiao M, Chen SC et al (2012) In vitro susceptibilities of yeast species to fluconazole and voriconazole as determined by the 2010 National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) study. J Clin Microbiol 50:3952–3959CrossRefGoogle Scholar
  6. 6.
    Zhang L, Xiao M, Wang H, Gao R, Fan X, Brown M, Gray TJ, Kong F, Xu YC, Warnock DW (2014) Yeast identification algorithm based on use of the Vitek MS system selectively supplemented with ribosomal DNA sequencing: proposal of a reference assay for invasive fungal surveillance programs in China. J Clin Microbiol 52:572–577CrossRefGoogle Scholar
  7. 7.
    Wang H, Fan Y-Y, Kudinha T et al (2016) A comprehensive evaluation of the Bruker Biotyper MS and Vitek MS matrix-assisted laser desorption ionization–time of flight mass spectrometry systems for identification of yeasts, part of the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) study, 2012 to 2013. J Clin Microbiol 54:1376–1380CrossRefGoogle Scholar
  8. 8.
    Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent problem. Clin Microbiol Rev 20:133–163CrossRefGoogle Scholar
  9. 9.
    Lewis RE (2009) Overview of the changing epidemiology of candidemia. Curr Med Res Opin 25:1732–1740CrossRefGoogle Scholar
  10. 10.
    Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M (2012) The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis 73:45–48CrossRefGoogle Scholar
  11. 11.
    Yapar N (2014) Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag 10:95–105CrossRefGoogle Scholar
  12. 12.
    Marklein G, Josten M, Klanke U, Muller E, Horre R, Maier T, Wenzel T, Kostrzewa M, Bierbaum G, Hoerauf A, Sahl HG (2009) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. J Clin Microbiol 47:2912–2917CrossRefGoogle Scholar
  13. 13.
    Chen JH, Yam WC, Ngan AH et al (2013) Advantages of using matrix-assisted laser desorption ionization–time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. J Clin Microbiol 51:3981–3987CrossRefGoogle Scholar
  14. 14.
    Eddouzi J, Lohberger A, Vogne C, Manai M, Sanglard D (2013) Identification and antifungal susceptibility of a large collection of yeast strains isolated in Tunisian hospitals. Med Mycol 51:737–746CrossRefGoogle Scholar
  15. 15.
    Jamal WY, Ahmad S, Khan ZU et al (2014) Comparative evaluation of two matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) systems for the identification of clinically significant yeasts. Int J Infect Dis 26:167–170CrossRefGoogle Scholar
  16. 16.
    Fraser M, Brown Z, Houldsworth M et al (2016) Rapid identification of 6328 isolates of pathogenic yeasts using MALDI-ToF MS and a simplified, rapid extraction procedure that is compatible with the Bruker Biotyper platform and database. Med Mycol 54:80–88Google Scholar
  17. 17.
    Marinach-Patrice C, Fekkar A, Atanasova R et al (2010) Rapid species diagnosis for invasive candidiasis using mass spectrometry. PLoS One 5:e8862CrossRefGoogle Scholar
  18. 18.
    Bizzini A, Greub G (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect 16:1614–1619CrossRefGoogle Scholar
  19. 19.
    Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR (2010) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol 48:3482–3486CrossRefGoogle Scholar
  20. 20.
    Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Groß U, Kuhns M (2011) Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 17:1359–1365CrossRefGoogle Scholar
  21. 21.
    Pinto A, Halliday C, Zahra M, van Hal S, Olma T, Maszewska K, Iredell JR, Meyer W, Chen SCA (2011) Matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra. PLoS One 6:e25712CrossRefGoogle Scholar
  22. 22.
    Theel ES, Schmitt BH, Hall L, Cunningham SA, Walchak RC, Patel R, Wengenack NL (2012) Formic acid-based direct, on-plate testing of yeast and Corynebacterium species by Bruker Biotyper matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 50:3093–3095CrossRefGoogle Scholar
  23. 23.
    Posteraro B, De Carolis E, Vella A et al (2013) MALDI-ToF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics 10:151–164CrossRefGoogle Scholar
  24. 24.
    Sendid B, Ducoroy P, Francois N et al (2013) Evaluation of MALDI-ToF mass spectrometry for the identification of medically-important yeasts in the clinical laboratories of Dijon and Lille hospitals. Med Mycol 51:25–32CrossRefGoogle Scholar
  25. 25.
    Buchan BW, Ledeboer NA (2013) Advances in identification of clinical yeast isolates by use of matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 51:1359–1366CrossRefGoogle Scholar
  26. 26.
    Bader O (2013) MALDI-ToF-MS-based species identification and typing approaches in medical mycology. Proteomics 13:788–799CrossRefGoogle Scholar
  27. 27.
    Mancini N, De Carolis E, Infurnari L et al (2013) Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization–time of flight (MALDI-ToF) mass spectrometry systems for identification of yeasts of medical importance. J Clin Microbiol 51:2453–2457CrossRefGoogle Scholar
  28. 28.
    Lacroix C, Gicquel A, Sendid B, Meyer J, Accoceberry I, François N, Morio F, Desoubeaux G, Chandenier J, Kauffmann-Lacroix C, Hennequin C, Guitard J, Nassif X, Bougnoux ME (2014) Evaluation of two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS) systems for the identification of Candida species. Clin Microbiol Infect 20:153–158CrossRefGoogle Scholar
  29. 29.
    Hamprecht A, Christ S, Oestreicher T, Plum G, Kempf VAJ, Göttig S (2014) Performance of two MALDI-ToF MS systems for the identification of yeasts isolated from bloodstream infections and cerebrospinal fluids using a time-saving direct transfer protocol. Med Microbiol Immunol 203:93–99CrossRefGoogle Scholar
  30. 30.
    Chao QT, Lee TF, Teng SH, Peng LY, Chen PH, Teng LJ, Hsueh PR (2014) Comparison of the accuracy of two conventional phenotypic methods and two MALDI-ToF MS systems with that of DNA sequencing analysis for correctly identifying clinically encountered yeasts. PLoS One 9:e109376CrossRefGoogle Scholar
  31. 31.
    Panda A, Ghosh AK, Mirdha BR, Xess I, Paul S, Samantaray JC, Srinivasan A, Khalil S, Rastogi N, Dabas Y (2015) MALDI-ToF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers. J Microbiol Methods 109:93–105CrossRefGoogle Scholar
  32. 32.
    Singhal N, Kumar M, Kanaujia PK et al (2015) MALDI-ToF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791CrossRefGoogle Scholar
  33. 33.
    Lévesque S, Dufresne PJ, Soualhine H, Domingo MC, Bekal S, Lefebvre B, Tremblay C (2015) A side by side comparison of Bruker Biotyper and VITEK MS: utility of MALDI-ToF MS technology for microorganism identification in a public health reference laboratory. PLoS One 10:e0144878CrossRefGoogle Scholar
  34. 34.
    Stefaniuk E, Baraniak A, Fortuna M, Hryniewicz W (2016) Usefulness of CHROMagar Candida medium, biochemical methods--API ID32C and VITEK 2 compact and two MALDI-ToF MS systems for Candida spp. identification. Pol J Microbiol 65:111–114CrossRefGoogle Scholar
  35. 35.
    Lee HS, Shin JH, Choi MJ, Won EJ, Kee SJ, Kim SH, Shin MG, Suh SP (2017) Comparison of the Bruker Biotyper and VITEK MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry systems using a formic acid extraction method to identify common and uncommon yeast isolates. Ann Lab Med 37:223–230CrossRefGoogle Scholar
  36. 36.
    Meletiadis J, Arabatzis M, Bompola M, Tsiveriotis K, Hini S, Petinaki E, Velegraki A, Zerva L (2011) Comparative evaluation of three commercial identification systems using common and rare bloodstream yeast isolates. J Clin Microbiol 49:2722–2727CrossRefGoogle Scholar
  37. 37.
    Posteraro B, Efremov L, Leoncini E, Amore R, Posteraro P, Ricciardi W, Sanguinetti M (2015) Are the conventional commercial yeast identification methods still helpful in the era of new clinical microbiology diagnostics? A meta-analysis of their accuracy. J Clin Microbiol 53:2439–2450CrossRefGoogle Scholar
  38. 38.
    Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Meis JF, Gould IM, Fu W, Colombo AL, Rodriguez-Noriega E, and the Global Antifungal Surveillance Group (2007) Results from the ARTEMIS DISK global antifungal surveillance study, 1997 to 2005: an 8.5-year analysis of susceptibilities of Candida species and other yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 45:1735–1745CrossRefGoogle Scholar
  39. 39.
    Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Tullio V, Rodloff A, Fu W, Ling TA, and the Global Antifungal Surveillance Group (2010) Results from the ARTEMIS DISK global antifungal surveillance study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48:1366–1377CrossRefGoogle Scholar
  40. 40.
    Castanheira M, Wooslev LN, Diekema DJ et al (2013) Candida guilliermondii and other species of Candida misidentified as Candida famata: assessment by Vitek 2, DNA sequencing analysis, and matrix-assisted laser desorption ionization–time of flight mass spectrometry in two global antifungal surveillance programs. J Clin Microbiol 51:117–124CrossRefGoogle Scholar
  41. 41.
    Jensen RH, Arendrup MC (2011) Candida palmioleophila: characterization of a previously overlooked pathogen and its unique susceptibility profile in comparison with five related species. J Clin Microbiol 49:549–556CrossRefGoogle Scholar
  42. 42.
    Ninghui G, Bing W, Wei R et al (2015) Application of PCR and high-resolution melting for rapid identification of yeasts routinely isolated in a clinical microbiology laboratory. Ann Clin Lab Sci 45:680–685Google Scholar
  43. 43.
    Pulcrano G, Iula DV, Vollaro A, Tucci A, Cerullo M, Esposito M, Rossano F, Catania MR (2013) Rapid and reliable MALDI-ToF mass spectrometry identification of Candida non-albicans isolates from bloodstream infections. J Microbiol Methods 94:262–266CrossRefGoogle Scholar
  44. 44.
    Vasilyeva NV, Raush ER, Rudneva MV, Bogomolova TS, Taraskina AE, Fang Y, Zhang F, Klimko NN (2018) Etiology of invasive candidosis agents in Russia: a multicenter epidemiological survey. Front Med 12:84–91CrossRefGoogle Scholar
  45. 45.
    Berrio I, Maidonado N, De Bedout C et al (2018) Comparative study for 147 Candida spp. identification and echinocandins susceptibility in isolates obtained from blood cultures in 15 hospitals in Medellín, Colombia. J Glob Antimicrob Resist 13:254–260CrossRefGoogle Scholar
  46. 46.
    Li D, Xia R, Zhang Q, Bai C, Li Z, Zhang P (2017) Evaluation of candidemia in epidemiology and risk factors among cancer patients in a cancer center of China: an 8-year case-control study. BMC Infect Dis 17:536CrossRefGoogle Scholar
  47. 47.
    Zhang L, Wang H, Xiao M, Kudinha T, Mao LL, Zhao HR, Kong F, Xu YC (2014) The widely used ATB FUNGUS 3 automated readings in China and its misleading high MICs of Candida spp. to azoles: challenges for developing countries’ clinical microbiology labs. PLoS One 9:e114004CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2018

Authors and Affiliations

  • Zhimin Hu
    • 1
    Email author
  • Juling Zhang
    • 2
  • Zhongju Chen
    • 3
  • Zhengjiang Jin
    • 4
  • Pei Leng
    • 5
  • Junying Zhou
    • 6
  • Xiaofang Xie
    • 7
  1. 1.Department of Clinical Microbiology Laboratory, Wuhan No. 1 Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Clinical LaboratoryPLA 302 HospitalPekingChina
  3. 3.Department of Clinical Microbiology Laboratory, Tongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  4. 4.Department of Clinical Microbiology LaboratoryHubei Women and Children’s HospitalWuhanChina
  5. 5.Department of Clinical LaboratoryWuhan Women and Children Medical Care CenterWuhanChina
  6. 6.Department of Clinical Microbiology LaboratoryZhongnan Hospital of Wuhan UniversityWuhanChina
  7. 7.Department of Clinical Microbiology LaboratoryThe First Affiliated Hospital of Soochow UniversitySoochowChina

Personalised recommendations