Brazilian Journal of Microbiology

, Volume 50, Issue 1, pp 43–52 | Cite as

Gene transcription profiling of Aspergillus oryzae 3.042 treated with ergosterol biosynthesis inhibitors

  • Zhihong Hu
  • Ganghua Li
  • Yunlong Sun
  • Yali Niu
  • Long Ma
  • Bin He
  • Mingqiang Ai
  • Jizhong Han
  • Bin ZengEmail author
Biotechnology and Industrial Microbiology - Research Paper


Ergosterol, a unique component of fungal cells, is not only important for fungal growth and stress responses but also holds great economic value. Limited studies have been performed on ergosterol biosynthesis in Aspergillus oryzae, a safe filamentous fungus that has been used for the manufacture of oriental fermented foods. This study revealed that the ergosterol biosynthesis pathway is conserved between Saccharomyces cerevisiae and A. oryzae 3.042 by treatment with ergosterol biosynthesis inhibitors and bioinformatics analysis. However, the ergosterol biosynthesis pathway in A. oryzae 3.042 is more complicated than that in S. cerevisiae as there are multiple paralogs encoding the same biosynthetic enzymes. Using RNA-seq, this study identified 138 and 104 differentially expressed genes (DEG) in response to the ergosterol biosynthesis inhibitors tebuconazole and terbinafine, respectively. The results showed that the most common DEGs were transport- and metabolism-related genes. There were only 17 DEGs regulated by both tebuconazole and terbinafine treatments and there were 256 DEGs between tebuconazole and terbinafine treatments. These results provide new information on A. oryzae ergosterol biosynthesis and regulation mechanisms, which may lay the foundation for genetic modification of the ergosterol biosynthesis pathway in A. oryzae.


Aspergillus oryzae Ergosterol biosynthesis Inhibitors Transcriptome 



This study was financially supported by the National Natural Science Foundation of China (NSFC) (Grant nos. 31700068 and 31460447), International S&T Cooperation Project of Jiangxi Provincial (Grant no. 20142BDH80003), General Science and Technology Project of Nanchang City (Grant no. 3000035402), “555 Talent Project” of Jiangxi Province, Natural Science Foundation of Jiangxi Province (Grant nos. 20181BAB214001 and 20171BAB214004), and the Open Foundation of Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization (Grant no. EWPL201705).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

42770_2018_26_MOESM1_ESM.png (1.9 mb)
ESM 1 (PNG 1.88 mb)
42770_2018_26_MOESM2_ESM.docx (17 kb)
ESM 2 (DOCX 16.9 kb)
42770_2018_26_MOESM3_ESM.docx (17 kb)
ESM 3 (DOCX 16.8 kb)
42770_2018_26_MOESM4_ESM.docx (17 kb)
ESM 4 (DOCX 17.1 kb)
42770_2018_26_MOESM5_ESM.docx (17 kb)
ESM 5 (DOCX 17 kb)
42770_2018_26_MOESM6_ESM.docx (17 kb)
ESM 6 (DOCX 17 kb)
42770_2018_26_MOESM7_ESM.docx (16 kb)
ESM 7 (DOCX 16.4 kb)
42770_2018_26_MOESM8_ESM.docx (17 kb)
ESM 8 (DOCX 16.8 kb)
42770_2018_26_MOESM9_ESM.docx (17 kb)
ESM 9 (DOCX 17.1 kb)


  1. 1.
    Wollam J, Antebi A (2011) Sterol regulation of metabolism, homeostasis and development. Annu Rev Biochem 80:885–916CrossRefGoogle Scholar
  2. 2.
    Prasad R, Shah AH, Antifungals RMK (2016) Mechanism of action and drug resistance. Adv Exp Med Biol 892:327–349CrossRefGoogle Scholar
  3. 3.
    Beni A, Soki E, Lajtha K, Fekete I (2014) An optimized HPLC method for soil fungal biomass determination and its application to a detritus manipulation study. J Microbiol Methods 103(4):124–130CrossRefGoogle Scholar
  4. 4.
    Kodedova M, Sychrova H (2015) Changes in the sterol composition of the plasma membrane affect membrane potential, salt tolerance and the activity of multidrug resistance pumps in Saccharomyces cerevisiae. PLoS One 10(9):e0139306CrossRefGoogle Scholar
  5. 5.
    Görög S (2011) Advances in the analysis of steroid hormone drugs in pharmaceuticals and environmental samples (2004–2010). J Pharm Biomed Anal 55(4):728–743CrossRefGoogle Scholar
  6. 6.
    Whiteman MK, Jeng G, Samarina A, Akatova N, Martirosyan M, Kissin DM, Curtis KM, Marchbanks PA, Hillis SD, Mandel MG, Jamieson DJ (Jan 2016) Associations of hormonal contraceptive use with measures of HIV disease progression and antiretroviral therapy effectiveness. Contraception 93(1):17–24CrossRefGoogle Scholar
  7. 7.
    Hu Z, He B, Ma L, Sun Y, Niu Y, Zeng B (2017) Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae Google Scholar
  8. 8.
    Hayakawa H, Sobue F, Motoyama K, Yoshimura T, Hemmi H (2017) Identification of enzymes involved in the mevalonate pathway of Flavobacterium johnsoniae. Biochem Biophys Res Commun 487(3):702–708CrossRefGoogle Scholar
  9. 9.
    Klug L, Daum G (2014) Yeast lipid metabolism at a glance. FEMS Yeast Res 14(3):369–388CrossRefGoogle Scholar
  10. 10.
    Lee SH, Raboune S, Walker JM, Bradshaw HB (2010) Distribution of endogenous farnesyl pyrophosphate and four species of lysophosphatidic acid in rodent brain. Int J Mol Sci 11(10):3965–3976CrossRefGoogle Scholar
  11. 11.
    Ahmad A, Khan A, Manzoor N, Khan LA (2010) Evolution of ergosterol biosynthesis inhibitors as fungicidal against Candida. Microb Pathog 48(1):35–41CrossRefGoogle Scholar
  12. 12.
    Müller C, Staudacher V, Krauss J, Giera M, Bracher F (2013) A convenient cellular assay for the identification of the molecular target of ergosterol biosynthesis inhibitors and quantification of their effects on total ergosterol biosynthesis. Steroids 78(5):483–493CrossRefGoogle Scholar
  13. 13.
    Kristan K, Rizner TL (Mar 2012) Steroid-transforming enzymes in fungi. J Steroid Biochem Mol Biol 129(1–2):79–91CrossRefGoogle Scholar
  14. 14.
    Mercer EI (1993) Inhibitors of sterol biosynthesis and their applications. Prog Lipid Res 32(4):357–416CrossRefGoogle Scholar
  15. 15.
    Ryder NS (2010) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126(s39):2–7CrossRefGoogle Scholar
  16. 16.
    Goldstein AS, Frye LL (1996) Synthesis and bioevaluation of delta 7-5-desaturase inhibitors, an enzyme late in the biosynthesis of the fungal sterol ergosterol. J Med Chem 39(26):5092–5099CrossRefGoogle Scholar
  17. 17.
    Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto KI, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama JI, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438(7071):1157–1161CrossRefGoogle Scholar
  18. 18.
    Zhao G, Yao Y, Chen W, Comparison CX (2013) Analysis of the genomes of two Aspergillus oryzae strains. J Agric Food Chem 61(32):7805–7809CrossRefGoogle Scholar
  19. 19.
    Bhattacharya S, Esquivel BD, White TC (2018) Overexpression or deletion of ergosterol biosynthesis genes alters doubling time, response to stress agents and drug susceptibility in Saccharomyces cerevisiae, mBio 9(4):e01291–18Google Scholar
  20. 20.
    Long M, Li ZQ, Lei B et al (2016) Identification and comparative study of chemosensory genes related to host selection by legs transcriptome analysis in the tea geometrid Ectropis obliqua. PLoS One 11(3):e0149591CrossRefGoogle Scholar
  21. 21.
    Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995CrossRefGoogle Scholar
  22. 22.
    Blanc G, Gallot-Lavallée L, Maumus F (2015) Provirophages in the Bigelowiella genome bear testimony to past encounters with giant viruses. Proc Natl Acad Sci U S A 112(38):5318–5326CrossRefGoogle Scholar
  23. 23.
    Wriessnegger T, Pichler H (2013) Yeast metabolic engineering – targeting sterol metabolism and terpenoid formation. Prog Lipid Res 52(3):277–293CrossRefGoogle Scholar
  24. 24.
    Mikeš V, Lochman J, Kašparovský T (2006) Ergosterol is a signal molecule that leads to the expression of defence-related genes in tobaccoGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2018

Authors and Affiliations

  • Zhihong Hu
    • 1
  • Ganghua Li
    • 2
  • Yunlong Sun
    • 1
  • Yali Niu
    • 1
  • Long Ma
    • 1
  • Bin He
    • 1
  • Mingqiang Ai
    • 1
  • Jizhong Han
    • 1
  • Bin Zeng
    • 1
    Email author
  1. 1.Jiangxi Key Laboratory of Bioprocess Engineering and Co-Innovation Center for In-vitro Diagnostic Reagents and Devices of Jiangxi Province, college of life sciencesJiangxi Science & Technology Normal UniversityNanchangChina
  2. 2.Hubei Key Laboratory of Edible Wild Plants Conservation and UtilizationHubei Normal UniversityHuangshiChina

Personalised recommendations