Brazilian Journal of Microbiology

, Volume 50, Issue 1, pp 23–31 | Cite as

The metabolism and genetic regulation of lipids in the oleaginous yeast Yarrowia lipolytica

  • Didiana Gálvez-López
  • Bianca Chávez-Meléndez
  • Alfredo Vázquez-Ovando
  • Raymundo Rosas-QuijanoEmail author
Biotechnology and Industrial Microbiology - Review


The biotechnological potential of Yarrowia lipolytica, as a single cell oil-producing microorganism, is presented in this review. Although initially this yeast species was considered as a lipid-degrading, recently, it was reclassified as a lipid-producing microorganism, since it has been reported to be capable of accumulating diverse desirable fatty acids after metabolic pathway engineering. In the first part of the present document, a general revision of the oil metabolic pathways and the capacity of oil production in Y. lipolytica is presented. The single cell oil produced by these metabolic engineering strategies has been designed by optimization, introduction, or suppression of new pathways to increase yield on lipid production. Later on, the genetic regulation systems and the lipid composition generated by this yeast for industrial purposes are discussed. These lipids could be safely used in the chemical food and biofuel industries, due to their high proportion of oleic acid. This document emphasizes in the overviewing at Y. lipolytica as an ideal oil cell factory, and as an excellent model to produce single cell oil.


Lipid metabolism Citric acid Lipases Hydrophobic substrates Y. lipolytica 



The authors thanks to the Mexican Instituto Politécnico Nacional, through SIP funding, for its contribution in the knowledge generation about this microorganism. Likewise, we are grateful for the scholarships granted by CONACYT Mexico.

Compliance with ethical standards

Conflict of interest

The authors declare not having a conflict of interests in this article’s publishing.


  1. 1.
    Thorsten Lumbsch H, Huhndorf SM (2007) Outline of Ascomycota 2007. Myconet 13:1–58Google Scholar
  2. 2.
    Bourdichon F, Casaregola S, Farrokh C, Frisvad JC et al (2012) Food fermentations: microorganisms with technological beneficial use. Int J Food Microbiol 154:87–97CrossRefGoogle Scholar
  3. 3.
    Sabirova R, Haddouche IN, Bogaert V, Mulaa F et al (2011) The ‘LipoYeasts’ project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products. Microb Biotechnol 4:47–54CrossRefGoogle Scholar
  4. 4.
    Barth G, Gaillardin C (1997) Physiology and genetic of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiol Rev 19:219–237CrossRefGoogle Scholar
  5. 5.
    Nicaud JM (2012) Yarrowia lipolytica. Yeast 29:409–418CrossRefGoogle Scholar
  6. 6.
    Rosas-Quijano R, Gallardin C (2011) Sistema Cre/loxP1 como herramienta genética en Yarrowia lipolytica. Rev Mex Micol 33:17–27Google Scholar
  7. 7.
    Mori K, Iwama R, Kobayashi S, Horiuchi H et al (2013) Transcriptional repression by glycerol of genes involved in the assimilation of n-alkanes and fatty acids in yeast Yarrowia lipolytica. FEMS Yeast Res 13:233–240CrossRefGoogle Scholar
  8. 8.
    Athenaki M, Gardeli C, Diamantopoulou P et al (2017) Lipids from yeasts and fungi: physiology, production and analytical considerations. J Appl Microbiol 124:336–367CrossRefGoogle Scholar
  9. 9.
    Papanikolaou S, Rontou M, Belka A, Athenaki M, Chr G, Mallouchos A, Kalantzi O, Koutinas AA et al (2017) Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng Life Sci 17:262–281CrossRefGoogle Scholar
  10. 10.
    Duarte SH, de Andradea CCP, Ghiselli S, Maugeri F (2013) Exploration of Brazilian biodiversity and selection of a new oleaginous yeast strain cultivated in raw glycerol. Bioresour Technol 138:377–388CrossRefGoogle Scholar
  11. 11.
    Gong ZG, Wang Q, Shen H, Hu C, Jin G, Zhao ZK (2012) Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol 117:20–24CrossRefGoogle Scholar
  12. 12.
    Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056CrossRefGoogle Scholar
  13. 13.
    Zhao X, Kong X, Hua T, Feng B, Zhao ZH (2008) Medium optimization for lipid production through cofermentation of glucose and xylose by the oleaginous yeast Lipomyces starkeyi. Eur J Lpid Sci Technol 110:405–412CrossRefGoogle Scholar
  14. 14.
    Yen HW, Liu YX, Chang JS (2015) The effects of feeding criteria on the growth of oleaginous yeast Rhodotorula glutinis in a pilot-scale airlift bioreactor. J Taiwan Inst Chem Eng 49:67–71CrossRefGoogle Scholar
  15. 15.
    Karamerou E, Theodoropoulos C, Webb C (2017) Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis. Eng Life Sci. 17:314–324CrossRefGoogle Scholar
  16. 16.
    Cui Y, Blackburn JW, Liang Y (2012) Fermentation optimization for the production of lipid by Cryptococcus curvatus: use of response surface methodology. Biomass Bioenergy 47:410–417CrossRefGoogle Scholar
  17. 17.
    Liang YN, Cui Y, Trushenski J, Blackburn JW (2010) Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour Technol 101:7581–7586CrossRefGoogle Scholar
  18. 18.
    Raimondi S, Rossi M, Leonardi A, Bianchi MM, Rinaldi T, Amaretti A (2014) Getting lipids from glycerol: new perspectives on biotechnological exploitation of Candida freyschussii. Microb Cell Factories 13:83CrossRefGoogle Scholar
  19. 19.
    Huang C, Wu H, Li RF, Zong MH (2012) Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. New Biotechnol 29:372–378CrossRefGoogle Scholar
  20. 20.
    Huang C, Wu H, Liu ZJ, Cai J, Lou WY, Zong MH (2012) Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. Biotechnol Biofuel. 5:4CrossRefGoogle Scholar
  21. 21.
    Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885CrossRefGoogle Scholar
  22. 22.
    Huang C, Chen XF, Xiong L, Chen XD, Ma LL (2012) Oil production by the yeast Trichosporon dermatis cultured in enzymatic hydrolysates of corncobs. Bioresour Technol 110:711–714CrossRefGoogle Scholar
  23. 23.
    Hu C, Wu S, Wang Q, Jin G, Shen H, Zhao ZK (2011) Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuel 4:25CrossRefGoogle Scholar
  24. 24.
    Li YH, Zhao ZB, Bai FW (2007) High density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzym Microb Technol 41:312–317CrossRefGoogle Scholar
  25. 25.
    Xu J, Zhao X, Wang W, Du W, Liu D (2012) Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochem Eng J 65:30–36CrossRefGoogle Scholar
  26. 26.
    Tchakouteu SS, Kalantzi O, Gardeli C, Koutinas AA, Aggelis G, Papanikolaou S (2015) Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118:911–927CrossRefGoogle Scholar
  27. 27.
    Shen H, Gong Z, Yang X, Jin G, Bai F, Zhao ZB (2013) Kinetics of continuous cultivation of the oleaginous yeast Rhodosporidium toruloides. J Biotechnol 168:85–89CrossRefGoogle Scholar
  28. 28.
    Tchakouteu S, Kopsahelis N, Chatzifragkou A, Kalantzi O, Stoforos NG, Koutinas AA, Aggelis G, Papanikolaou S (2017) Rhodosporidium toruloides cultivated in NaCl-enriched glucose-based media: adaptation dynamics and lipid production. Eng Life Sci. 17:237–248CrossRefGoogle Scholar
  29. 29.
    Patel A, Arora N, Pruthi V, Pruthi PA (2017) Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. J Clean Prod 142:2858–2864CrossRefGoogle Scholar
  30. 30.
    Rakicka M, Lazar Z, Dulermo T, Fickers P, Nicaud JM (2015) Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnol Biofuel. 8:104CrossRefGoogle Scholar
  31. 31.
    Tsigie YA, Wang CY, Truong CT, Ju YH (2011) Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresour Technol 102:9216–9222CrossRefGoogle Scholar
  32. 32.
    Louhasakul Y, Cheirsilp B (2013) Industrial waste utilization for low-cost production of raw material oil through microbial fermentation. Appl Biochem Biotechnol 169:110–122CrossRefGoogle Scholar
  33. 33.
    Ledesma-Amaro R, Nicaud JM (2016) Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Progr in Lyp Res 61:40–50CrossRefGoogle Scholar
  34. 34.
    Niehus X, Crutz-Le Coq AM, Sandoval G, Nicaud JM, Ledesma-Amaro R (2018) Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnol Biofuel. 11:11. CrossRefGoogle Scholar
  35. 35.
    Dulermo T, Nicaud JM (2011) Involvement of the G3P shuttle and b-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13:482–491CrossRefGoogle Scholar
  36. 36.
    Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789CrossRefGoogle Scholar
  37. 37.
    Ledesma-Amaro R, Lazar Z, Rakicka M et al (2016) Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab Eng 38:115–124CrossRefGoogle Scholar
  38. 38.
    Imatoukene N, Verbeke J, Beopoulos A et al (2017) A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 101:4605–4616CrossRefGoogle Scholar
  39. 39.
    Lazar Z, Walczak E, Robak M (2011) Simultaneous production of citric acid and invertase by Yarrowia lipolytica SUC + transformants. Bioresour Technol 102:6982–6989CrossRefGoogle Scholar
  40. 40.
    Tsigie YA, Wang CY, Kasim NS, Diem QD et al (2012) Oil production from Yarrowia lipolytica Po1g using rice bran hydrolysate. J Biomed Biotechnol:1–10.
  41. 41.
    Gonçalves FAG, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Scientific World J:1–14.
  42. 42.
    Friedlander J, Tsakraklides V, Kamineni A, Greenhagen EH et al (2016) Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnol Biofuels 9:77–89CrossRefGoogle Scholar
  43. 43.
    Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL et al (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387CrossRefGoogle Scholar
  44. 44.
    Kosa M, Ragauskas AJ (2011) Lipids from heterotrophic microbes: advances in metabolism research. Trends in Biotechnol 29:53–61CrossRefGoogle Scholar
  45. 45.
    Blazeck J, Hill A, Liu L, Knight R et al (2014) Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nature Comm 31:1–10Google Scholar
  46. 46.
    Fukuda R (2013) Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica. Biosci Biotechnol Biochem (6):1149–1154Google Scholar
  47. 47.
    Papanikolaou S, Aggelis G (2011) Lipid of oleaginous yeast. Part I: biochimestry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051CrossRefGoogle Scholar
  48. 48.
    Dulermo T, Tréton B, Beopoulos A, Kabran APG et al (2013) Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organization. Biochim Biophys Acta 1831:482–491Google Scholar
  49. 49.
    Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG (2011) Oily yeasts as oleaginous cell factories. Microbial Biotechnol 90:1219–1227CrossRefGoogle Scholar
  50. 50.
    Beopoulos A, Chardot T, Nicaud JM (2009) Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie 91:692–696CrossRefGoogle Scholar
  51. 51.
    Silverman AM, Qiao K, Xu P, Stephanopoulos G (2016) Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica. Appl Microbiol Biotechnol 100:3781CrossRefGoogle Scholar
  52. 52.
    Guo T, Gregg T, Boukh-Viner T, Kyryakov P et al (2007) A signal from inside the peroxisome initiates its division by promoting the remodeling of the peroxisomal membrane. J Cell Biol 177:289–303CrossRefGoogle Scholar
  53. 53.
    Pignède G, Wang H-J, Gaillardin C, Fudalej F et al (2000) Autocloning and amplication of LIP2 in Yarrowia lipolytica. Appl Environ Microb 66:3283–3289CrossRefGoogle Scholar
  54. 54.
    Kobayashi S, Tezaki S, Horiuchi H, Fukuda R et al (2015) Acidic phospholipid-independent interaction of Yas3p, an Opi1-family transcriptional repressor of Yarrowia lipolytica, with the endoplasmic reticulum. Yeast 32:691–701CrossRefGoogle Scholar
  55. 55.
    Zhang B, Chen H, Li M, Gu Z et al (2013) Genetic engineering of Yarrowia lipolytica for enhanced production of trans 10, cis-12 conjugated linoleic acid. Microb Cell Factories 12:1–8CrossRefGoogle Scholar
  56. 56.
    Xie D, Jackson EN, Zhu Q (2015) Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: from fundamental research to commercial production. Appl Microbiol Biotechnol 99:1599–1610CrossRefGoogle Scholar
  57. 57.
    Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y et al (2007) Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet 369:1090–1098CrossRefGoogle Scholar
  58. 58.
    Ballantyne CM, Bays HE, Kastelein JJ, Stein E et al (2012) Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in StatinTreated patients with persistent high triglycerides (from the ANCHOR study). Am J Cardiol 110:984–992CrossRefGoogle Scholar
  59. 59.
    Xue Z, Sharpe PL, Hong SP, Yadav NS et al (2013) Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnol 31:734–740CrossRefGoogle Scholar
  60. 60.
    Yousuf A (2012) Biodiesel from lignocellulosic biomass - prospects and challenges. Waste Manag 32:2061–2067CrossRefGoogle Scholar
  61. 61.
    Katre G, Joshi C, Khot M, Zinjarde S et al (2012) Evaluation of single cell oil (SCO) from a tropical marine yeast Yarrowia lipolytica NCIM 3589 as a potential feedstock for biodiesel. AMB Express 2:1–14CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2018

Authors and Affiliations

  • Didiana Gálvez-López
    • 1
  • Bianca Chávez-Meléndez
    • 2
  • Alfredo Vázquez-Ovando
    • 1
  • Raymundo Rosas-Quijano
    • 1
    Email author
  1. 1.Instituto de BiocienciasUniversidad Autónoma de ChiapasTapachulaMéxico
  2. 2.Unidad Académica MultidisciplinariaUniversidad Autónoma de TamaulipasReynosaMéxico

Personalised recommendations