Brazilian Journal of Microbiology

, Volume 50, Issue 1, pp 255–261 | Cite as

Development of a real-time nucleic acid sequence–based amplification assay for the rapid detection of Salmonella spp. from food

  • Ligong Zhai
  • Hongxia Liu
  • Qiming Chen
  • Zhaoxin Lu
  • Chong Zhang
  • Fengxia Lv
  • Xiaomei BieEmail author
Food Microbiology - Research Paper


Salmonella spp. is one of the most common foodborne infectious pathogen. This study aimed to develop a real-time nucleic acid sequence–based amplification (NASBA) assay for detecting Salmonella in foods. Primers and a molecular beacon targeting the Salmonella-specific xcd gene were designed for mRNA transcription, and 48 Salmonella and 18 non-Salmonella strains were examined. The assay showed a high specificity and low detection limit for Salmonella (7 × 10−1 CFU/mL) after 12 h of pre-enrichment. Importantly, it could detect viable cells. Additionally, the efficacy of the NASBA assay was examined in the presence of pork background microbiota; it could detect Salmonella cells at 9.5 × 103 CFU/mL. Lastly, it was successfully used to detect Salmonella in pork, beef, and milk, and its detection limit was as low as 10 CFU/25 g (mL). The real-time NASBA assay developed in this study may be useful for rapid, specific, and sensitive detection of Salmonella in food of animal origin.


Salmonella spp. Real-time NASBA Food Detection 


Funding information

This work was supported by grants from the National Science and Technology Support Program, the Social Development Program of Jiangsu Province, the Independent Innovation Program of Jiangsu Province, and the University Natura Science Key Project of Anhui Province (Grant Nos. 2012BAK08807, BE2012746, CX (12)3087, and KJ2016A182).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict interest.


  1. 1.
    Tennant SM, Diallo S, Levy H, Livio S, Sow SO, Tapia M, Fields PI, Mikoleit M, Tamboura B, Kotloff KL, Nataro JP, Galen JE, Levine MM (2010) Identification by PCR of non-typhoidal Salmonella enterica serovars associated with invasive infections among febrile patients in Mali. PLoS Negl Trop Dis 4(3)Google Scholar
  2. 2.
    Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ et al (2010) The global burden of nontyphoidal salmonella gastroenteritis. Clin Infect Dis 50(6):882–889CrossRefGoogle Scholar
  3. 3.
    Bale J, Meunier D, Weill FX, Depinna E, Peters T, Nair S (2016) Characterisation of new Salmonella serovars by whole genome sequencing and traditional typing techniques. J Med Microbiol 65(10):1074–1078CrossRefGoogle Scholar
  4. 4.
    Li H, Xin H, Li SFY (2015) Multiplex PMA–qPCR assay with internal amplification control for simultaneous detection of viable legionella pneumophila, Salmonella typhimurium, and Staphylococcus aureus in environmental waters. Environ Sci Technol 49(24):14249–14256CrossRefGoogle Scholar
  5. 5.
    Gharieb RM, Tartor YH, Khedr MHE (2015) Non-Typhoidal Salmonella in poultry meat and diarrhoeic patients: prevalence, antibiogram, virulotyping, molecular detection and sequencing of class I integrons in multidrug resistant strains. Gut Pathog 7(1):1–11CrossRefGoogle Scholar
  6. 6.
    Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States-major pathogens. Emerg Infect Dis 17(1):7–15CrossRefGoogle Scholar
  7. 7.
    Chattopadhyay S, Kaur A, Jain S, Singh H (2013) Sensitive detection of food-borne pathogen Salmonella by modified PAN fibers-immunoassay. Biosens Bioelectron 45:274–280CrossRefGoogle Scholar
  8. 8.
    Guibourdenche M, Roggentin P, Mikoleit M, Fields PI, Bockemuehl J, Grimont PAD et al (2010) Supplement 2003-2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res Microbiol 161(1):26–29CrossRefGoogle Scholar
  9. 9.
    Nielsen LR, Dohoo I (2013) Time-to-event analysis of predictors for recovery from Salmonella Dublin infection in Danish dairy herds between 2002 and 2012. Prev Vet Med 110(3–4):370–378CrossRefGoogle Scholar
  10. 10.
    Ferretti R, Mannazzu I, Cocolin L, Comi G, Clementi F (2001) Twelve-hour PCR-based method for detection of Salmonella spp. in food. Appl Environ Microbiol 67(2):977–978CrossRefGoogle Scholar
  11. 11.
    Hagren V, Lode PV, Syrjälä A, Korpimäki T, Tuomola M, Kauko O et al (2008) An 8-hour system for Salmonella detection with immunomagnetic separation and homogeneous time-resolved fluorescence PCR. Int J Food Microbiol 125(2):158–161CrossRefGoogle Scholar
  12. 12.
    Deere D, Porter J, Pickup RW, Edwards C (1996) Survival of cells and DNA of Aeromonas salmonicida released into aquatic microcosms. J Appl Bacteriol 81(3):309–318CrossRefGoogle Scholar
  13. 13.
    Compton J (1991) Nucleic-acid sequence-based amplification. Nature 350(6313):91–92CrossRefGoogle Scholar
  14. 14.
    Keer JT, Birch L (2003) Molecular methods for the assessment of bacterial viability. J Microbiol Methods 53(2):175–183CrossRefGoogle Scholar
  15. 15.
    Fykse EM, Skogan G, Davies W, Olsen JS, Blatny JM (2007) Detection of Vibrio cholerae by real-time nucleic acid sequence-based amplification. Appl Environ Microbiol 73(5):1457–1466CrossRefGoogle Scholar
  16. 16.
    Polstra AM, Goudsmit J, Cornelissen M (2002) Development of real-time NASBA assays with molecular beacon detection to quantify mRNA coding for HHV-8 lytic and latent genes. BMC Infect Dis 2Google Scholar
  17. 17.
    Moore C, Hibbitts S, Owen N, Corden SA, Harrison G, Fox J, Gelder C, Westmoreland D (2004) Development and evaluation of a real-time nucleic acid sequence based amplification assay for rapid detection of influenza A. J Med Virol 74(4):619–628CrossRefGoogle Scholar
  18. 18.
    Kong X, Lu Z, Zhai L, Yao S, Zhang C, Lv F, Bie X (2013) Mining and evaluation of new specific molecular targets for the PCR detection of Salmonella spp. genome. World J Microbiol Biotechnol 29(12):2219–2226CrossRefGoogle Scholar
  19. 19.
    Rahn K, Degrandis SA, Clarke RC, McEwen SA, Galan JE, Ginocchio C et al (1992) Amplicification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6(4):271–279CrossRefGoogle Scholar
  20. 20.
    Sundsfjord A, Olsvik O (1997) Nucleic acid amplification techniques in detection and diagnosis of medicallyimportant viral infections[J]. Nucleic acid amplification technologies: application to disease diagnosis. Birkhauser Boston, Cambridge, p 183–199Google Scholar
  21. 21.
    Churruca E, Girbau C, Martinez I, Mateo E, Alonso R, Fernandez-Astorga A (2007) Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons. Int J Food Microbiol 117(1):85–90CrossRefGoogle Scholar
  22. 22.
    Fykse EM, Nilsen T, Nielsen AD, Tryland I, Delacroix S, Blatny JM, Real-time PCR (2012) NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water. Mar Pollut Bull 64(2):200–206CrossRefGoogle Scholar
  23. 23.
    Mollasalehi H, Yazdanparast R (2013) An improved non-crosslinking gold nanoprobe-NASBA based on 16S rRNA for rapid discriminative bio-sensing of major salmonellosis pathogens. Biosens Bioelectron 47:231–236CrossRefGoogle Scholar
  24. 24.
    Lee SH, Hava DL, Waldor MK, Camilli A (1999) Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99(6):625–634CrossRefGoogle Scholar
  25. 25.
    Arraiano CM, Yancey SD, Kushner SR (1988) Stabilization of discrete messenger-RNA breakdown products in ams pnp rnb multiple mutants of Escherichia-coli K-12. J Bacteriol 170(10):4625–4633CrossRefGoogle Scholar
  26. 26.
    Scuderi G, Golmohammadi M, Cubero J, Lopez MM, Cirvilleri G, Llop P (2010) Development of a simplified NASBA protocol for detecting viable cells of the citrus pathogen Xanthomonas citri subsp citri under different treatments. Plant Pathol 59(4):764–772CrossRefGoogle Scholar
  27. 27.
    Chen J, Zhang L, Paoli GC, Shi C, Tu S-I, Shi X (2010) A real-time PCR method for the detection of Salmonella enterica from food using a target sequence identified by comparative genomic analysis. Int J Food Microbiol 137(2):168–174CrossRefGoogle Scholar
  28. 28.
    D'Souza DH, Jaykus LA (2003) Nucleic acid sequence based amplification for the rapid and sensitive detection of Salmonella enterica from foods. J Appl Microbiol 95(6):1343–1350CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2018

Authors and Affiliations

  • Ligong Zhai
    • 1
    • 2
  • Hongxia Liu
    • 1
  • Qiming Chen
    • 1
  • Zhaoxin Lu
    • 1
  • Chong Zhang
    • 1
  • Fengxia Lv
    • 1
  • Xiaomei Bie
    • 1
    Email author
  1. 1.College of Food Science and Technology, Key Laboratory of Food Processing and Quality Control, Ministry of Agriculture of ChinaNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.College of Food and DrugAnhui Science and Technology UniversityFengyangPeople’s Republic of China

Personalised recommendations