Numerical simulation of flow past stationary and oscillating deformable circles with fluid-structure interaction

  • 213 Accesses


The oscillation and deformation of the tube affect its safe and efficient operation in the shell-and-tube heat exchanger of the nuclear power plant. To offer in-depth understandings, numerical simulation of the flow around the cylinder (or particle) was carried out here by using COMSOL Multiphysics as a research tool. This paper mainly discusses the influence of physical parameters (elastic modulus and Poisson’s ratio) and lateral oscillation on the flow around the circles (cylinder or particle). The physical property parameters have a greater influence on the deformation, lift coefficient, and drag coefficient of the object, and it basically does not affect the vortex shedding frequency. After analyzing the flow around the oscillating particle, four kinds of vortex separation modes (AI, AII, S, S-S modes) are defined. In addition, the lift coefficient and drag coefficient for different modes are discussed. The phenomenon of frequency locking occurs in the flow around the oscillating particle. Simulation results prove that the separation frequency of vortex is related to the oscillation frequency


  1. Cadenaro, M., Codan, B., Navarra, C. O., Marchesi, G., Turco, G., di Lenarda, R., Breschi, L. 2011. Contraction stress, elastic modulus, and degree of conversion of three flowable composites. Eur J Oral Sci, 119: 241—245.

  2. Catalano, P., Wang, M., Iaccarino, G., Moin, P. 2003. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. Int J Heat Fluid Fl, 24: 463–469.

  3. Fournier, J. B., Barbetta, C. 2008. Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes. Phys Rev Lett, 100: 078103.

  4. Gessesse, Y. B. 2014. On the fretting wear of nuclear power plant heat exchanger tubes using a fracture mechanics approach: Theory and verification. Ph.D. Thesis. Concordia University.

  5. Gong, M. J., Peng, M. J., Zhu, H. S. 2018. Research of multiple refined degree simulating and modeling for high pressure feed water heat exchanger in nuclear power plant. Appl Therm Eng, 140: 190–207.

  6. Greenspan, D. 1991. Vortex Street Modelling.

  7. Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S. 2009. Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. J Comput Phys, 228: 6916–6937.

  8. Hamed, A. M., Vega, J., Liu, B., Chamorro, L. P. 2017. Flow around a semicircular cylinder with passive flow control mechanisms. Exp Fluids, 58: 22.

  9. He, T. 2015. A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder. Int J Comput Methods, 12: 1550012.

  10. He, X. W., Liu, N., Wang, G. P., Zhang, F. J., Li, S., Shao, S. D., Wang, H. 2012. Staggered meshless solid-fluid coupling. ACM T Graphic, 31: 1–12.

  11. Jiang, H. B., Cheng, Z. Q., Zhao, Y. P. 2013. Function airfoil and its pressure distribution and lift coefficient calculation. Appl Mech Mater, 328: 351–356.

  12. Meneghini, J. R., Saltara, F., Siqueira, C. L. R., Ferrari, J. A. Jr. 2001. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. J Fluid Struct, 15: 327–350.

  13. Meng, F. Q., He, B. J., Zhu, J., Zhao, D. X., Darko, A., Zhao, Z. Q. 2018. Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations. J Build Eng, 16: 146–158.

  14. Mustto, A. A., Bodstein, G. C. R. 2011. Subgrid-scale modeling of turbulent flow around circular cylinder by mesh-free vortex method. Eng Appl Comput Fl Mech, 5: 259–275.

  15. Mustto, A. A., Bodstein, G. C. R. 2013. Improved vortex method for the simulation of the flow around circular cylinders. In: Proceedings of the AIAA Computational Fluid Dynamics Conference.

  16. Park, J., Kwon, K., Choi, H. 1998. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int J, 12: 1200–1205.

  17. Penrose, J. M. T., Staples, C. J. 2002. Implicit fluid-structure coupling for simulation of cardiovascular problems. Int J Numer Meth Fl, 40: 467–478.

  18. Ploumhans, P., Winckelmans, G. S., Salmon, J. K., Leonard, A., Warren, M. S. 2002. Vortex methods for direct numerical simulation of three-dimensional bluff body flows: Application to the sphere at Re = 300. 500. and 1000. J Comput Phys, 178: 427–463.

  19. Rajani, B. N., Kandasamy, A., Majumdar, S. 2009. Numerical simulation of laminar flow past a circular cylinder. Appl Math Model, 33: 1228–1247.

  20. Rajesh, V., Chamkha, A. J., Sridevi, C., Al-Mudhaf, A. F. 2017. A numerical investigation of transient MHD free convective flow of a nanofluid over a moving semi-infinite vertical cylinder. Eng Comput, 34: 1393–1412.

  21. Ricci, M., Patruno, L., de Miranda, S., Ubertini, F. 2017. Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction. Comput Fluids, 149: 181–193.

  22. Rival, D. E., Kriegseis, J., Schaub, P., Widmann, A., Tropea, C. 2014. Characteristic length scales for vortex detachment on plunging profiles with varying leading-edge geometry. Exp Fluids, 55: 1660.

  23. Son, J. S., Hanratty, T. J. 1969. Numerical solution for the flow around a cylinder at Reynolds numbers of 40. 20. and 500. J Fluid Mech, 35: 369–386.

  24. Tschoegl, N. W., Knauss, W. G., Emri, I. 2002. Poisson’s ratio in linear viscoelasticity A critical review. Mech Time-Depend Mat, 6: 3–51.

  25. Wang, Y., Wei, S., Yan, X. T., Yao, C., Ming, Y. 2010. Computer simulation for bone scaffolds on account of fluid-solid coupling model. In: Proceedings of the 200. International Forum on Computer Science-Technology and Applications: 251–254.

  26. Wang, Z., Luo, W., Gao, L., Li, M. 2014. Modeling the bottom-up filling of through silicon vias with different additives. In: Proceedings of the 201. 15th International Conference on Electronic Packaging Technology: 618–621.

  27. Williamson, C. H. K. 1995. Vortex dynamics in the wake of a cylinder. In: Fluid Vortices. Fluid Mechanics and Its Applications, Vol. 30. Green, S. I. Ed. Springer Dordrecht: 155–234.

  28. Yue, Q., Liu, J., Luo, M., Zhang, Q. 2018. A method of fluid-solid coupling dynamics for tube bundle vibration and collision in a cylinder fluid domain. Appl Math Mech, 39: 568–583. (in Chinese)

  29. Zare Ghadi, A., Goodarzian, H., Gorji-Bandpy, M., Sadegh Valipour, M. 2012. Numerical investigation of magnetic effect on forced convection around two-dimensional circular cylinder embedded in porous media. Eng Appl Comp Fluid, 6: 395–402.

  30. Zhang, Y., Xiao, Z., Fu, S. 2007. Analysis of vortex shedding modes of an in-line oscillating circular cylinder in a uniform flow. Chinese Journal of Theoretical & Applied Mechanics, 39: 408–416. (in Chinese)

  31. Zhou, X., Wang, J. J., Hu, Y. 2019. Experimental investigation on the flow around a circular cylinder with upstream splitter plate. Journal of Visual, 22: 683–695.

Download references


The authors are grateful for the support of this research by the National Natural Science Foundation of China (Grant No. 51576211), the National High-tech R&D Program of China (863) (Grant No. 2014AA052701), and the Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51621002).

Author information

Correspondence to Shengyao Jiang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gui, N., Wu, H. et al. Numerical simulation of flow past stationary and oscillating deformable circles with fluid-structure interaction. Exp. Comput. Multiph. Flow 2, 151–161 (2020).

Download citation


  • flow around cylinder
  • particle
  • flow induced oscillation
  • fluid’ structure interaction
  • vortex shedding
  • heat exchange
  • reactor thermal hydraulics