Experimental and Computational Multiphase Flow

, Volume 2, Issue 3, pp 151–161 | Cite as

Numerical simulation of flow past stationary and oscillating deformable circles with fluid-structure interaction

  • Xu Liu
  • Nan Gui
  • Hao Wu
  • Xingtuan Yang
  • Jiyuan Tu
  • Shengyao JiangEmail author
Research Article


The oscillation and deformation of the tube affect its safe and efficient operation in the shell-and-tube heat exchanger of the nuclear power plant. To offer in-depth understandings, numerical simulation of the flow around the cylinder (or particle) was carried out here by using COMSOL Multiphysics as a research tool. This paper mainly discusses the influence of physical parameters (elastic modulus and Poisson’s ratio) and lateral oscillation on the flow around the circles (cylinder or particle). The physical property parameters have a greater influence on the deformation, lift coefficient, and drag coefficient of the object, and it basically does not affect the vortex shedding frequency. After analyzing the flow around the oscillating particle, four kinds of vortex separation modes (AI, AII, S, S-S modes) are defined. In addition, the lift coefficient and drag coefficient for different modes are discussed. The phenomenon of frequency locking occurs in the flow around the oscillating particle. Simulation results prove that the separation frequency of vortex is related to the oscillation frequency


flow around cylinder particle flow induced oscillation fluid’ structure interaction vortex shedding heat exchange reactor thermal hydraulics 



The authors are grateful for the support of this research by the National Natural Science Foundation of China (Grant No. 51576211), the National High-tech R&D Program of China (863) (Grant No. 2014AA052701), and the Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51621002).


  1. Cadenaro, M., Codan, B., Navarra, C. O., Marchesi, G., Turco, G., di Lenarda, R., Breschi, L. 2011. Contraction stress, elastic modulus, and degree of conversion of three flowable composites. Eur J Oral Sci, 119: 241—245.CrossRefGoogle Scholar
  2. Catalano, P., Wang, M., Iaccarino, G., Moin, P. 2003. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. Int J Heat Fluid Fl, 24: 463–469.CrossRefGoogle Scholar
  3. Fournier, J. B., Barbetta, C. 2008. Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes. Phys Rev Lett, 100: 078103.Google Scholar
  4. Gessesse, Y. B. 2014. On the fretting wear of nuclear power plant heat exchanger tubes using a fracture mechanics approach: Theory and verification. Ph.D. Thesis. Concordia University.Google Scholar
  5. Gong, M. J., Peng, M. J., Zhu, H. S. 2018. Research of multiple refined degree simulating and modeling for high pressure feed water heat exchanger in nuclear power plant. Appl Therm Eng, 140: 190–207.CrossRefGoogle Scholar
  6. Greenspan, D. 1991. Vortex Street Modelling.CrossRefGoogle Scholar
  7. Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S. 2009. Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. J Comput Phys, 228: 6916–6937.MathSciNetCrossRefGoogle Scholar
  8. Hamed, A. M., Vega, J., Liu, B., Chamorro, L. P. 2017. Flow around a semicircular cylinder with passive flow control mechanisms. Exp Fluids, 58: 22.CrossRefGoogle Scholar
  9. He, T. 2015. A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder. Int J Comput Methods, 12: 1550012.MathSciNetCrossRefGoogle Scholar
  10. He, X. W., Liu, N., Wang, G. P., Zhang, F. J., Li, S., Shao, S. D., Wang, H. 2012. Staggered meshless solid-fluid coupling. ACM T Graphic, 31: 1–12.CrossRefGoogle Scholar
  11. Jiang, H. B., Cheng, Z. Q., Zhao, Y. P. 2013. Function airfoil and its pressure distribution and lift coefficient calculation. Appl Mech Mater, 328: 351–356.CrossRefGoogle Scholar
  12. Meneghini, J. R., Saltara, F., Siqueira, C. L. R., Ferrari, J. A. Jr. 2001. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. J Fluid Struct, 15: 327–350.CrossRefGoogle Scholar
  13. Meng, F. Q., He, B. J., Zhu, J., Zhao, D. X., Darko, A., Zhao, Z. Q. 2018. Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations. J Build Eng, 16: 146–158.CrossRefGoogle Scholar
  14. Mustto, A. A., Bodstein, G. C. R. 2011. Subgrid-scale modeling of turbulent flow around circular cylinder by mesh-free vortex method. Eng Appl Comput Fl Mech, 5: 259–275.Google Scholar
  15. Mustto, A. A., Bodstein, G. C. R. 2013. Improved vortex method for the simulation of the flow around circular cylinders. In: Proceedings of the AIAA Computational Fluid Dynamics Conference.Google Scholar
  16. Park, J., Kwon, K., Choi, H. 1998. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int J, 12: 1200–1205.CrossRefGoogle Scholar
  17. Penrose, J. M. T., Staples, C. J. 2002. Implicit fluid-structure coupling for simulation of cardiovascular problems. Int J Numer Meth Fl, 40: 467–478.CrossRefGoogle Scholar
  18. Ploumhans, P., Winckelmans, G. S., Salmon, J. K., Leonard, A., Warren, M. S. 2002. Vortex methods for direct numerical simulation of three-dimensional bluff body flows: Application to the sphere at Re = 300. 500. and 1000. J Comput Phys, 178: 427–463.MathSciNetCrossRefGoogle Scholar
  19. Rajani, B. N., Kandasamy, A., Majumdar, S. 2009. Numerical simulation of laminar flow past a circular cylinder. Appl Math Model, 33: 1228–1247.MathSciNetCrossRefGoogle Scholar
  20. Rajesh, V., Chamkha, A. J., Sridevi, C., Al-Mudhaf, A. F. 2017. A numerical investigation of transient MHD free convective flow of a nanofluid over a moving semi-infinite vertical cylinder. Eng Comput, 34: 1393–1412.CrossRefGoogle Scholar
  21. Ricci, M., Patruno, L., de Miranda, S., Ubertini, F. 2017. Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction. Comput Fluids, 149: 181–193.MathSciNetCrossRefGoogle Scholar
  22. Rival, D. E., Kriegseis, J., Schaub, P., Widmann, A., Tropea, C. 2014. Characteristic length scales for vortex detachment on plunging profiles with varying leading-edge geometry. Exp Fluids, 55: 1660.Google Scholar
  23. Son, J. S., Hanratty, T. J. 1969. Numerical solution for the flow around a cylinder at Reynolds numbers of 40. 20. and 500. J Fluid Mech, 35: 369–386.CrossRefGoogle Scholar
  24. Tschoegl, N. W., Knauss, W. G., Emri, I. 2002. Poisson’s ratio in linear viscoelasticity A critical review. Mech Time-Depend Mat, 6: 3–51.CrossRefGoogle Scholar
  25. Wang, Y., Wei, S., Yan, X. T., Yao, C., Ming, Y. 2010. Computer simulation for bone scaffolds on account of fluid-solid coupling model. In: Proceedings of the 200. International Forum on Computer Science-Technology and Applications: 251–254.Google Scholar
  26. Wang, Z., Luo, W., Gao, L., Li, M. 2014. Modeling the bottom-up filling of through silicon vias with different additives. In: Proceedings of the 201. 15th International Conference on Electronic Packaging Technology: 618–621.Google Scholar
  27. Williamson, C. H. K. 1995. Vortex dynamics in the wake of a cylinder. In: Fluid Vortices. Fluid Mechanics and Its Applications, Vol. 30. Green, S. I. Ed. Springer Dordrecht: 155–234.Google Scholar
  28. Yue, Q., Liu, J., Luo, M., Zhang, Q. 2018. A method of fluid-solid coupling dynamics for tube bundle vibration and collision in a cylinder fluid domain. Appl Math Mech, 39: 568–583. (in Chinese)CrossRefGoogle Scholar
  29. Zare Ghadi, A., Goodarzian, H., Gorji-Bandpy, M., Sadegh Valipour, M. 2012. Numerical investigation of magnetic effect on forced convection around two-dimensional circular cylinder embedded in porous media. Eng Appl Comp Fluid, 6: 395–402.Google Scholar
  30. Zhang, Y., Xiao, Z., Fu, S. 2007. Analysis of vortex shedding modes of an in-line oscillating circular cylinder in a uniform flow. Chinese Journal of Theoretical & Applied Mechanics, 39: 408–416. (in Chinese)Google Scholar
  31. Zhou, X., Wang, J. J., Hu, Y. 2019. Experimental investigation on the flow around a circular cylinder with upstream splitter plate. Journal of Visual, 22: 683–695.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  • Xu Liu
    • 1
  • Nan Gui
    • 1
  • Hao Wu
    • 1
  • Xingtuan Yang
    • 1
  • Jiyuan Tu
    • 1
    • 2
  • Shengyao Jiang
    • 1
    Email author
  1. 1.Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety, Ministry of EducationTsinghua UniversityBeijingChina
  2. 2.School of EngineeringRMIT UniversityMelbourneAustralia

Personalised recommendations