Advertisement

A review on bubble generation and transportation in Venturi-type bubble generators

  • Jiang Huang
  • Licheng SunEmail author
  • Hongtao LiuEmail author
  • Zhengyu Mo
  • Jiguo Tang
  • Guo Xie
  • Min Du
Review Article
  • 62 Downloads

Abstract

Venturi-type bubble generators own advantages of simplicity in structure, high efficiency, low power consumption, and high reliability, exhibiting a broad application potential in various fields. This work presents a literature review of recent progress in the research concerning Venturi-type bubble generators, with a focus on the performance evaluation, bubble transportation, and breakup mechanisms. Experimental studies employing flow visualization techniques have played an important role in exploring the bubble transportation and breakup phenomena, which is vitally necessary for clarifying the bubble breakup mechanisms and understanding the working principle and performance of a Venturi channel as a bubble generator. A summarization was carried out on both experimental and theoretical work concerning parameters influencing the bubble breakup and the performance of Venturi-type bubble generators. Based on the geometric parameter optimization combined with appropriate flow conditions, it is expected that Venturi-type bubble generators can produce bubbles with controllable size and concentration to satisfy the application requirements, while a further work is required to illustrate the interaction between the liquid and gas bubbles.

Keywords

Venturi-type bubble generator performance bubble transportation bubble breakup mechanism 

Notes

Acknowledgments

The authors are profoundly grateful to the financial supports of the National Natural Science Foundation of China (Grant Nos. 51706149, 51709191, 51606130) and Sichuan Science and Technology Program (Grant No. 19ZX0148Z090101001).

References

  1. Agarwal, A., Ng, W. J., Liu, Y. 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 84: 1175–1180.CrossRefGoogle Scholar
  2. Ahmadi, R., Khodadadi, D. A., Abdollahy, M., Fan, M. M. 2014. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. Int J Min Sci Technol, 24: 559–566.CrossRefGoogle Scholar
  3. Ahmadpour, A., Noori Rahim Abadi, S. M. A., Kouhikamali, R. 2016. Numerical simulation of two-phase gas-liquid flow through gradual expansions/contractions. Int J Multiphase Flow, 79: 31–49.MathSciNetCrossRefGoogle Scholar
  4. Akhtar, M. S., Rajesh, M., Ciji, A., Sharma, P., Kamalam, B. S., Patiyal, R. S., Singh, A. K., Sarma, D. 2018. Photo-thermal manipulations induce captive maturation and spawning in endangered golden mahseer (Tor putitora): A silver-lining in the strangled conservation efforts of decades. Aquaculture, 497: 336–347.CrossRefGoogle Scholar
  5. Ali, M., Yan, C. Q., Sun, Z. N., Gu, H. F., Mehboob, K. 2013. Dust particle removal efficiency of a Venturi scrubber. Ann Nucl Energy, 54: 178–183.CrossRefGoogle Scholar
  6. Baawain, M. S., Gamal El-Din, M., Clarke, K., Smith, D. W. 2007. Impinging-jet ozone bubble column modeling: Hydrodynamics, gas hold-up, bubble characteristics, and ozone mass transfer. Ozone: Science & Engineering, 29: 245–259.CrossRefGoogle Scholar
  7. Bagatur, T. 2014. Evaluation of plant growth with aerated irrigation water using venturi pipe part. Arab J Sci Eng, 39: 2525–2533.CrossRefGoogle Scholar
  8. Bal, M., Reddy, T. T., Meikap, B. C. 2019. Removal of HCl gas from off gases using self-priming Venturi scrubber. J Hazard Mater, 364: 406–418.CrossRefGoogle Scholar
  9. Balamurugan, S., Lad, M. D., Gaikar, V. G., Patwardhan, A. W. 2007. Hydrodynamics and mass transfer characteristics of gas-liquid ejectors. Chem Eng J, 131: 83–103.CrossRefGoogle Scholar
  10. Basso, A., Hamad, F. A., Ganesan, P. 2018. Effects of the geometrical configuration of air-water mixer on the size and distribution of microbubbles in aeration systems. Asia-Pac J Chem Eng, 13: e2259.CrossRefGoogle Scholar
  11. Bauer, W. G., Fredrickson, A. G., Tsuchiya, H. M. 1963. Mass transfer characteristics of Venturi liquid-gas contactor. Ind Eng Chem Process Des Dev, 2: 178–187.CrossRefGoogle Scholar
  12. Briens, C. L., Huynh, L. X., Large, J. F., Catros, A., Bernard, J. R., Bergougnou, M. A. 1992. Hydrodynamics and gas-liquid mass transfer in a downward Venturi-bubble column combination. Chem Eng Sci, 47: 3549–3556.CrossRefGoogle Scholar
  13. Cramers, P. H. M. R., Beenackers, A. A. C. M. 2001. Influence of the ejector configuration, scale and the gas density on the mass transfer characteristics of gas-liquid ejectors. Chem Eng J, 82: 131–141.CrossRefGoogle Scholar
  14. Dahrazma, B., Naghedinia, A., Gorji, H. G., Saghravani, S. F. 2019. Morphological and physiological responses of Cucumis sativus L. to water with micro-nanobubbles. J Agr Sci Tech, 21: 181–192.Google Scholar
  15. Fujikawa, S., Zhang, R. S., Hayama, S., Peng, G. Y. 2003. The control of micro-air-bubble generation by a rotational porous plate. Int J Multiphase Flow, 29: 1221–1236.zbMATHCrossRefGoogle Scholar
  16. Fujiwara, A., Okamoto, K., Hashiguchi, K., Peixinho, J., Takagi, S., Matsumoto, Y. 2007. Bubble breakup phenomena in a Venturi tube. In: Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference: FEDSM2007-37243.Google Scholar
  17. Fujiwara, A., Takagi, S., Watanabe, K., Matsumoto, Y. 2003. Experimental study on the new micro-bubble generator and its application to water purification system. In: Proceedings of the ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, Honolulu: FEDSM2003-45162.Google Scholar
  18. Gabbard, C. H. 1972. Development of a Venturi type bubble generator for use in the molten-salt reactor xenon removal system. Office of Scientific and Technical Information: ORNL-TM-4122.Google Scholar
  19. Gordiychuk, A., Svanera, M., Benini, S., Poesio, P. 2016. Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator. Exp Therm Fluid Sci, 70: 51–60.CrossRefGoogle Scholar
  20. Gourich, B., El Azher, N., Vial, C., Soulami, M. B., Ziyad, M., Zoulalian, A. 2007. Influence of operating conditions and design parameters on hydrodynamics and mass transfer in an emulsion loop-venturi reactor. Chem Eng Process, 46: 139–149.CrossRefGoogle Scholar
  21. Gourich, B., Soulami, M. B., Zoulalian, A., Ziyad, M. 2005. Simultaneous measurement of gas hold-up and mass transfer coefficient by tracer dynamic technique in “Emulsair” reactor with an emulsion-venturi distributor. Chem Eng sci, 60: 6414–6421.CrossRefGoogle Scholar
  22. Gulhane, N. P., Landge, A. D., Shukla, D. S., Kale, S. S. 2015. Experimental study of iodine removal efficiency in self-priming Venturi scrubber. Ann Nucl Energy, 78: 152–159.CrossRefGoogle Scholar
  23. Hashim, A., Yaakob, O. B., Koh, K. K., Ismail, N., Ahmed, Y. M. 2015. Review of micro-bubble ship resistance reduction methods and the mechanisms that affect the skin friction on drag reduction from 1999 to 2015. J Teknologi, 74: 105–114.Google Scholar
  24. Havelka, P., Linek, V., Sinkule, J., Zahradnik, J., Fialova, M. 2000. Hydrodynamic and mass transfer characteristics of ejector loop reactors. Chem Eng Sci, 55: 535–549.CrossRefGoogle Scholar
  25. Huang, J., Sun, L. C., Du, M., Liang, Z., Mo, Z. Y., Tang, J. G., Xie, G. 2019a. An investigation on the performance of a micro-scale Venturi bubble generator. Chem Eng J,  https://doi.org/10.1016/j.cej.2019.02.068 Google Scholar
  26. Huang, J., Sun, L. C., Du, M., Mo, Z. Y., Zhao, L. 2018. A visualized study of interfacial behavior of air-water two-phase flow in a rectangular Venturi channel. Theor Appl Mech Lett, 8: 334–344.CrossRefGoogle Scholar
  27. Huang, J., Sun, L. C., Mo, Z. Y., Liu, H. T., Du, M., Tang, J. G., Bao, J. J. 2019b. A visualized study of bubble breakup in small rectangular Venturi channels. Exp Comput Multiph Flow, 1: 177–185.CrossRefGoogle Scholar
  28. Huynh, L. X., Briens, C. L., Large, J. F., Catros, A., Bernard, J. R., Bergougnou, M. A. 1991. Hydrodynamics and mass transfer in an upward Venturi/bubble column combination. Can J Chem Eng, 69: 711–722.CrossRefGoogle Scholar
  29. Ishii, R., Umeda, Y., Murata, S., Shishido, N. 1993. Bubbly flows through a converging-diverging nozzle. Phys Fluid Fluid Dynam, 5: 1630–1643.zbMATHCrossRefGoogle Scholar
  30. Jackson, M. L. 1964. Aeration in Bernoulli types of devices. AIChE J, 10: 836–842.CrossRefGoogle Scholar
  31. Kandakure, M. T., Gaikar, V. G., Patwardhan, A. W. 2005. Hydrodynamic aspects of ejectors. Chem Eng Sci, 60: 6391–6402.CrossRefGoogle Scholar
  32. Kaneko, A., Gong, X., Takagi, S., Matsumoto, Y. 2012. Development of microbubble generator and its utilization to enhance the mass transfer in the bubble plumes and columns. In: Proceedings of the ASME 2012 Fluids Engineering Summer Meeting: FEDSM2012-72097.Google Scholar
  33. Kawamura, T., Fujiwara, A., Takahashi, T., Kato, H., Matsumoto, Y., Kodama, Y. 2004. The effects of the bubble size on the bubble dispersion and skin friction reduction. In: Proceedings of the 5th Symposium on Smart Control of Turbulence: 145–151.Google Scholar
  34. Kaya, Y., Bacaksiz, A. M., Bayrak, H., Gönder, Z. B., Vergili, I., Hasar, H., Yilmaz, G. 2017. Treatment of chemical synthesis-based pharmaceutical wastewater in an ozonation-anaerobic membrane bioreactor (AnMBR) system. Chem Eng J, 322: 293–301.CrossRefGoogle Scholar
  35. Kayaalp, N., Ozturkmen, G. 2016. A Venturi device reduces membrane fouling in a submerged membrane bioreactor. Water Sci Technol, 74: 147–156.Google Scholar
  36. Kowe, R., Hunt, J. C. R., Hunt, A., Couet, B., Bradbury, L. J. S. 1988. The effects of bubbles on the volume fluxes and the pressure gradients in unsteady and non-uniform flow of liquids. Int J Multiphase Flow, 14: 587–606.CrossRefGoogle Scholar
  37. Kress, T. S. 1972. Mass transfer between small bubbles and liquids in cocurrent turbulent pipeline flow. Office of Scientific and Technical Information: ORNL-TM-3718.Google Scholar
  38. Krusong, W., Yaiyen, S., Pornpukdeewatana, S. 2015. Impact of high initial concentrations of acetic acid and ethanol on acetification rate in an internal Venturi injector bioreactor. J Appl Microbiol, 118: 629–640.CrossRefGoogle Scholar
  39. Kuo, J. T. 1978. Flow of bubbles through nozzles. Ph.D. Thesis. Dartmouth College, New Hampshire.Google Scholar
  40. Kuo, J. T., Wallis, G. B. 1988. Flow of bubbles through nozzles. Int J Multiphase Flow, 14: 547–564.CrossRefGoogle Scholar
  41. Lee, C. H., Choi, H., Jerng, D. W., Kim, D. E., Wongwises, S., Ahn, H. S. 2019. Experimental investigation of microbubble generation in the Venturi nozzle. Int J Heat Mass Tran, 136: 1127–1138.CrossRefGoogle Scholar
  42. Li, J. J., Song Y. C., Yin, J. L., Wang, D. Z. 2017. Investigation on the effect of geometrical parameters on the performance of a Venturi type bubble generator. Nucl Eng Des, 325: 90–96.CrossRefGoogle Scholar
  43. Li, X. L., Ma, X. W., Zhang, L., Zhang, H. C. 2016. Dynamic characteristics of ventilated bubble moving in micro scale venturi. Chem Eng Process, 100: 79–86.CrossRefGoogle Scholar
  44. Liao, Y. X., Lucas, D. 2009. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem Eng Sci, 64: 3389–3406.CrossRefGoogle Scholar
  45. Magnaudet, J., Rivero, M., Fabre, J. 1995. Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow. J Fluid Mech, 284: 97–135.MathSciNetzbMATHCrossRefGoogle Scholar
  46. Majid, A. I., Nugroho, F. M., Juwana, W. E., Budhijanto, W., Deendarlianto, Indarto. 2018. On the performance of venturi-porous pipe microbubble generator with inlet angle of 20° and outlet angle of 12°. AIP Conference Proceedings, 2001: 050009.CrossRefGoogle Scholar
  47. Mansour, M., Kováts, P., Wunderlich, B., Thévenin, D. 2018. Experimental investigations of a two-phase gas/liquid flow in a diverging horizontal channel. Exp Therm Fluid Sci, 93: 210–217.CrossRefGoogle Scholar
  48. Mills, C. S. L., Schlegel, J. P. 2019a. Interfacial area measurement with new algorithm for grouping bubbles by diameter. Exp Comput Multiph Flow, 1: 61–72.CrossRefGoogle Scholar
  49. Mills, C., Schlegel, J. P. 2019b. Comparison of data processing algorithm performance for optical and conductivity void probes. Exp Comput Multiph Flow,  https://doi.org/10.1007/s42757-019-0017-y.Google Scholar
  50. Mitra, S., Daltrophe, N. C., Gilron, J. 2016. A novel eductor-based MBR for the treatment of domestic wastewater. Water Res, 100: 65–79.CrossRefGoogle Scholar
  51. Nakatake, Y., Kisu, S., Shigyo, K., Eguchi, T., Watanabe, T. 2013. Effect of nano air-bubbles mixed into gas oil on common-rail diesel engine. Energy, 59: 233–239.CrossRefGoogle Scholar
  52. Nomura, Y., Uesawa, S., Kaneko, A., Abe, Y. 2011. Study on bubble breakup mechanism in a Venturi tube. In: Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: AJK2011-10024.Google Scholar
  53. Onari, H., Saga, T., Watanabe, K., Maeda, K., Matsuo, K. 1999. High functional characteristics of micro-bubbles and water purification. Resour Process, 46: 238–244. (in Japanese).CrossRefGoogle Scholar
  54. Poh, P. E., Ong, W. Y. J., Lau, E. V., Chong, M. N. 2014. Investigation on micro-bubble flotation and coagulation for the treatment of anaerobically treated palm oil mill effluent (POME). J Environ Chem Eng, 2: 1174–1181.CrossRefGoogle Scholar
  55. Reay, D., Ratcliff, G. A. 1973. Removal of fine particles from water by dispersed air flotation: Effects of bubble size and particle size on collection efficiency. Can J Chem Eng, 51: 178–185.CrossRefGoogle Scholar
  56. Reichmann, F., Koch, M. J., Kockmann, N. 2017b. Investigation of bubble breakup in laminar, transient, and turbulent regime behind micronozzles. In: Proceedings of the ASME 2017 15th International Conference on Nanochannels, Microchannels, and Minichannels: ICNMM2017-5540. aiReichmann, F., Tollkötter, A., Körner, S., Kockmann, N. 2017c. Gas-liquid dispersion in micronozzles and microreactor design for high interfacial area. Chem Eng Sci, 169: 151–163.Google Scholar
  57. Reichmann, F., Varel, F., Kockmann, N. 2017a. Energy optimization of gas-liquid dispersion in micronozzles assisted by design of experiment. Processes, 5: 57.CrossRefGoogle Scholar
  58. Reis, A. S., Barrozo, M. A. S. 2016. A study on bubble formation and its relation with the performance of apatite flotation. Sep Purif Technol, 161: 112–120.CrossRefGoogle Scholar
  59. Rodrigues, R. T., Rubio, J. 2003. New basis for measuring the size distribution of bubbles. Miner Eng, 16: 757–765.CrossRefGoogle Scholar
  60. Rodrigues, R. T., Rubio, J. 2007. DAF-dissolved air flotation: Potential applications in the mining and mineral processing industry. Int J Miner Process, 82: 1–13.CrossRefGoogle Scholar
  61. Sadatomi, M., Kawahara, A., Kano, K., Ohtomo, A. 2005. Performance of a new micro-bubble generator with a spherical body in a flowing water tube. Exp Therm Fluid Sci, 29: 615–623.CrossRefGoogle Scholar
  62. Sadatomi, M., Kawahara, A., Matsuura, H., Shikatani, S. 2012. Micro-bubble generation rate and bubble dissolution rate into water by a simple multi-fluid mixer with orifice and porous tube. Exp Therm Fluid Sci, 41: 23–30.CrossRefGoogle Scholar
  63. Sandhu, N., Jameson, G. J. 1979. An experimental study of choked foam flows in a convergent-divergent nozzle. Int J Multiphase Flow, 5: 39–58.CrossRefGoogle Scholar
  64. Sharma, D., Patwardhan, A., Ranade, V. 2018. Effect of turbulent dispersion on hydrodynamic characteristics in a liquid jet ejector. Energy, 164: 10–20.CrossRefGoogle Scholar
  65. Song, Y. C., Wang, D. Z., Yin, J. L., Li, J. J., Cai, K. B. 2019. Experimental studies on bubble breakup mechanism in a venturi bubble generator. Ann Nucl Energy, 130: 259–270.CrossRefGoogle Scholar
  66. Soubiran, J., Sherwood, J. D. 2000. Bubble motion in a potential flow within a Venturi. Int J Multiphase Flow, 26: 1771–1796.zbMATHCrossRefGoogle Scholar
  67. Sparrow, E. M., Abraham, J. P., Minkowycz, W. J. 2009. Flow separation in a diverging conical duct: Effect of Reynolds number and divergence angle. Int J Heat Mass Tran, 52: 3079–3083.zbMATHCrossRefGoogle Scholar
  68. Sun, L. C., Mo, Z. Y., Zhao, L., Liu, H. T., Guo, X., Ju, X. F., Bao, J. J. 2017. Characteristics and mechanism of bubble breakup in a bubble generator developed for a small TMSR. Ann Nucl Energy, 109: 69–81.CrossRefGoogle Scholar
  69. Terasaka, K., Hirabayashi, A., Nishino, T., Fujioka, S., Kobayashi, D. 2011. Development of microbubble aerator for waste water treatment using aerobic activated sludge. Chem Eng Sci, 66: 3172–3179.CrossRefGoogle Scholar
  70. Uesawa, S.-I., Kaneko, A., Nomura, Y., Abe, Y. 2011. Fluctuation of void fraction in the microbubble generator with a Venturi tube. In: Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: AJK2011-10014.Google Scholar
  71. Uesawa, S.-I., Kaneko, A., Nomura, Y., Abe, Y. 2012. Study on bubble breakup behavior in a Venturi tube. Multiphase Sci Tech, 24: 257–277.CrossRefGoogle Scholar
  72. Unyaphan, S., Tarnpradab, T., Takahashi, F., Yoshikawa, K. 2017. Improvement of tar removal performance of oil scrubber by producing syngas microbubbles. Appl Energy, 205: 802–812.CrossRefGoogle Scholar
  73. Van der Geld, C. W. M., van Wingaarden, H., Brand, B. A. 2001. Experiments on the effect of acceleration on the drag of tapwater bubbles. Exp Fluids, 31: 708–722.CrossRefGoogle Scholar
  74. Wang, Y. C., Chen, E. 2002. Effects of phase relative motion on critical bubbly flows through a converging-diverging nozzle. Phys Fluids, 14: 3215–3223.zbMATHCrossRefGoogle Scholar
  75. Wilkinson, P. M., van Schayk, A., Spronken, J. P. M., van Dierendonck, L. L. 1993. The influence of gas density and liquid properties on bubble breakup. Chem Eng Sci, 48: 1213–1226.CrossRefGoogle Scholar
  76. Wu, Z. H., Chen, H. B., Dong, Y. M., Mao, H. L., Sun, J. L., Chen, S. F., Craig, V. S. J., Hu, J. 2008. Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. J Colloid Interf Sci, 328: 10–14.CrossRefGoogle Scholar
  77. Xu, Q. Y., Nakajima, M., Ichikawa, S., Nakamura, N., Shiina, T. 2008. A comparative study of microbubble generation by mechanical agitation and sonication. Innov Food Sci Emerg, 9: 489–494.CrossRefGoogle Scholar
  78. Yin, J. L., Li, J. J., Li, H., Liu, W., Wang, D. Z. 2015. Experimental study on the bubble generation characteristics for a Venturi type bubble generator. Int J Heat Mass Transf, 91: 218–224.CrossRefGoogle Scholar
  79. Yoshida, A., Takahashi, O., Ishii, Y., Sekimoto, Y., Kurata, Y. 2008. Water purification using the adsorption characteristics of microbubbles. Jpn J Appl Phys, 47: 6574–6577.CrossRefGoogle Scholar
  80. Zahradnik, J., Fialová, M., Linek, V., Sinkule, J., Reznícková, J., Kaštánek, F. 1997. Dispersion efficiency of ejector-type gas distributors in different operating modes. Chem Eng Sci, 52: 4499–4510.CrossRefGoogle Scholar
  81. Zhao, L., Mo, Z. Y., Sun, L. C., Xie, G., Liu, H. T., Du, M., Tang. J. G. 2017. A visualized study of the motion of individual bubbles in a Venturi-type bubble generator. Prog Nucl Energ, 97: 74–89.CrossRefGoogle Scholar
  82. Zhao, L., Sun, L. C., Mo, Z. Y., Du, M., Huang, J., Bao, J. J., Tang, J. G., Xie, G. 2019. Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles. Int J Multiphase Flow, 114: 192–206.CrossRefGoogle Scholar
  83. Zhao, L., Sun, L. C., Mo, Z. Y., Tang, J. G., Hu, L. Y., Bao, J. J. 2018. An investigation on bubble motion in liquid flowing through a rectangular Ventutri channel. Exp Therm Fluid Sci, 97: 48–58.CrossRefGoogle Scholar
  84. Zhou, H., Smith, D. W. 2000. Ozone mass transfer in water and wastewater treatment: Experimental observations using a 2D laser particle dynamics analyzer. Water Res, 34: 909–921.CrossRefGoogle Scholar
  85. Zhou, Y. M., Sun, Z. N., Gu, H. F., Miao, Z. 2016. Performance of iodide vapour absorption in the Venturi scrubber working in self-priming mode. Ann Nucl Energy, 87: 426–434.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & HydropowerSichuan UniversityChengduChina

Personalised recommendations