Advertisement

From indoor exposure to inhaled particle deposition: A multiphase journey of inhaled particles

  • Kiao InthavongEmail author
Review Article

Abstract

Indoor air quality and its effect on respiratory health are reliant on understanding the level of inhalation exposure, particle inhalability, and particle deposition in the respiratory airway. In the indoor environment, controlling airflow through different ventilation systems can reduce inhalation exposure. This produces a wide variety of complex flow phenomena, such as recirculation, coanda flow, separation, and reattachment. Airborne particles drifting through the air, that move within the breathing region become inhaled into nasal cavity the nostrils. Studies have developed the aspiration efficiency to assist in predicting the fraction of inhaled particles. Inside the nasal cavity, micron and submicron particle deposition occurs in very different ways (inertial impaction, sedimentation, diffusion) and different locations. In addition, fibrous particles such as asbestos are influenced by tumbling effects and its deposition mechanism can include interception. Indoor fluid-particle dynamics related to inhalation exposure and eventual deposition in the respiratory airway is presented. This study involves multi-disciplinary fields involving building science, fluid dynamics, computer science, and medical imaging disciplines. In the future, an integrated approach can lead to digital/in-silico representations of the human respiratory airway able to predict the inhaled particle exposure and its toxicology effect.

Keywords

inhalation exposure respiratory airway fluid-partide dynamics CFD particles 

Notes

Acknowledgements

The author acknowledges the financial support for the research, authorship, and/or publication of this article from the Australian Research Council (Grant No. DP160101953).

References

  1. Aitken, R. J., Baldwin, P. E. J., Beaumont, G. C., Kenny, L. C., Maynard, A. D. 1999. Aerosol inhalability in low air movement environments. J Aerosol Sci, 30: 613–626.CrossRefGoogle Scholar
  2. Anderson, K. R., Anthony, T. R. 2014. Influence of secondary aspiration on human aspiration efficiency. J Aerosol Sci, 75: 65–80.CrossRefGoogle Scholar
  3. Anthony, T. R. 2010. Contribution of facial feature dimensions and velocity parameters on particle inhalability. Ann Occup Hyg, 54: 710–725.Google Scholar
  4. Anthony, T. R., Anderson, K. R. 2013. Computational fluid dynamics investigation of human aspiration in low-velocity air: Orientation effects on mouth-breathing simulations. Ann Occup Hyg, 57: 740–757.Google Scholar
  5. Anthony, T. R., Flynn, M. R. 2006. Computational fluid dynamics investigation of particle inhalability. J Aerosol Sci, 37: 750–765.CrossRefGoogle Scholar
  6. Baldwin, P. E. J., Maynard, A. D. 1998. A survey of wind speeds in indoor workplaces. Ann Occup Hyg, 42: 303–313.CrossRefGoogle Scholar
  7. Belyaev, S. P., Levin, L. M. 1972. Investigation of aerosol aspiration by photographing particle tracks under flash illumination. J Aerosol Sci, 3: 127–140.CrossRefGoogle Scholar
  8. Chen, F. Z., Yu, S. C. M., Lai, A. C. K. 2006. Modeling particle distribution and deposition in indoor environments with a new drift-flux model. Atmos Environ, 40: 357–367.CrossRefGoogle Scholar
  9. Chen, Q. 1995. Comparison of different k-e models for indoor air flow computations. Numer Heat Tr B: Fund, 28: 353–369.CrossRefGoogle Scholar
  10. Cheong, K. W., Djunaedy, E. 2001. The influence of furniture and equipment layouts on airflow pattern in a clean room. Build Serv Eng Res T, 22: 261–266.CrossRefGoogle Scholar
  11. Choi, J. I., Edwards, J. R. 2012. Large-eddy simulation of human-induced contaminant transport in room compartments. Indoor Air, 22: 77–87.CrossRefGoogle Scholar
  12. Churchill, S. E., Shackelford, L. L., Georgi, J. N., Black, M. T. 2004. Morphological variation and airflow dynamics in the human nose. Am J Hum Biol, 16: 625–638.CrossRefGoogle Scholar
  13. Dai, Y.-T., Juang, Y.-J., Wu, Y.-Y., Breysse, P. N., Hsu, D.-J. 2006. In vivo measurements of inhalability of ultralarge aerosol particles in calm air by humans. J Aerosol Sci, 37: 967–973.CrossRefGoogle Scholar
  14. Dehbi, A. 2011. Prediction of extrathoracic aerosol deposition using RANS-Random Walk and LES approaches. Aerosol Sci Tech, 45: 555–569.CrossRefGoogle Scholar
  15. Dong, J., Shang, Y., Tian, L., Inthavong, K., Qiu, D., Tu, J. 2019. Ultrafine particle deposition in a realistic human airway at multiple inhalation scenarios. Int J Numer Meth Biomed Engng, 35: e3215.CrossRefGoogle Scholar
  16. Dong, J. L., Shang, Y. D., Inthavong, K., Chan, H.-K., Tu, J. Y. 2018. Partitioning of dispersed nanoparticles in a realistic nasal passage for targeted drug delivery. Int J Pharmaceut, 543: 83–95.CrossRefGoogle Scholar
  17. Dong, J. L., Shang, Y. D., Inthavong, K., Tu, J. Y., Chen, R., Bai, R., Wang, D. L., Chen, C. Y. 2016. From the cover: comparative numerical modeling of inhaled nanoparticle deposition in human and rat nasal cavities. Toxicol Sci, 152: 284–296.CrossRefGoogle Scholar
  18. Doorly, D. J., Taylor, D. J., Schroter, R. C. 2008. Mechanics of airflow in the human nasal airways. Resp Physiol Neurobi, 163: 100–110.CrossRefGoogle Scholar
  19. Edge, B. A., Paterson, E. G., Settles, G. S. 2005. Computational study of the wake and contaminant transport of a walking human. J Fluid Eng, 127: 967–977.CrossRefGoogle Scholar
  20. Garcia, G. J. M., Schroeter, J. D., Kimbell, J. S. 2015. Olfactory deposition of inhaled nanoparticles in humans. Inhal Toxicol, 27: 394–403.CrossRefGoogle Scholar
  21. Ge, Q. J., Inthavong, K., Tu, J. Y. 2012. Local deposition fractions of ultrafine particles in a human nasal-sinus cavity CFD model. Inhal Toxicol, 24: 492–505.CrossRefGoogle Scholar
  22. Ghahramani, E., Abouali, O., Emdad, H., Ahmadi, G. 2014. Numerical analysis of stochastic dispersion of micro-particles in turbulent flows in a realistic model of human nasal/upper airway. J Aerosol Sci, 67: 188–206.CrossRefGoogle Scholar
  23. Haider, A., Levenspiel, O. 1989. Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol, 58: 63–70.CrossRefGoogle Scholar
  24. Heschl, C., Inthavong, K., Sanz, W., Tu, J. 2014. Nonlinear eddy viscosity modeling and experimental study of jet spreading rates. Indoor Air, 24: 93–102.CrossRefGoogle Scholar
  25. Heschl, C., Inthavong, K., Sanz, W., Tu, J. Y. 2013. Evaluation and improvements of RANS turbulence models for linear diffuser flows. Comput Fluids, 71: 272–282.MathSciNetzbMATHCrossRefGoogle Scholar
  26. Holmberg, S., Chen, Q. 2003. Air flow and particle control with different ventilation systems in a classroom. Indoor Air, 13: 200–204.CrossRefGoogle Scholar
  27. Inthavong, K., Ge, Q. J., Li, X. D., Tu, J. Y. 2012. Detailed predictions of particle aspiration affected by respiratory inhalation and airflow. Atmos Environ, 62: 107–117.CrossRefGoogle Scholar
  28. Inthavong, K., Ge, Q. J., Li, X. D., Tu, J. Y. 2013a. Source and trajectories of inhaled particles from a surrounding environment and its deposition in the respiratory airway. Inhal Toxicol, 25: 280–291.CrossRefGoogle Scholar
  29. Inthavong, K., Ge, Q. J., Se, C. M. K., Yang, W., Tu, J. Y. 2011a. Simulation of sprayed particle deposition in a human nasal cavity including a nasal spray device. J Aerosol Sci, 42: 100–113.CrossRefGoogle Scholar
  30. Inthavong, K., Ma, J., Shang, Y., Dong, J., Chetty, A. S. R., Tu, J., Frank-Ito, D. 2019. Geometry and airflow dynamics analysis in the nasal cavity during inhalation. Clin Biomech, 66: 97–106.CrossRefGoogle Scholar
  31. Inthavong, K., Mouritz, A. P., Dong, J. L., Tu, J. Y. 2013b. Inhalation and deposition of carbon and glass composite fibre in the respiratory airway. J Aerosol Sci, 65: 58–68.CrossRefGoogle Scholar
  32. Inthavong, K., Shang, Y. D., Tu, J. Y. 2014. Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity. Resp Physiol Neurobi, 190: 54–61.CrossRefGoogle Scholar
  33. Inthavong, K., Tao, Y., Petersen, P., Mohanarangam, K., Yang, W., Tu, J. Y. 2017. A smoke visualisation technique for wake flow from a moving human manikin. J Visual, 20: 125–137.CrossRefGoogle Scholar
  34. Inthavong, K., Tian, L., Tu, J. Y. 2016. Lagrangian particle modelling of spherical nanoparticle dispersion and deposition in confined flows. J Aerosol Sci, 96: 56–68.CrossRefGoogle Scholar
  35. Inthavong, K., Tian, Z. F., Li, H. F., Tu, J. Y., Yang, W., Xue, C. L., Li, C. G. 2006. A numerical study of spray particle deposition in a human nasal cavity. Aerosol Sci Tech, 40: 1034–1045.CrossRefGoogle Scholar
  36. Inthavong, K., Tu, J. Y., Heschl, C. 2011b. Micron particle deposition in the nasal cavity using the v 2-f model. Comput Fluids, 51: 184–188.zbMATHCrossRefGoogle Scholar
  37. Inthavong, K., Wen, J., Tian, Z. F., Tu, J. Y. 2008. Numerical study of fibre deposition in a human nasal cavity. J Aerosol Sci, 39: 253–265.CrossRefGoogle Scholar
  38. Inthavong, K., Zhang, K., Tu, J. Y. 2011c. Numerical modelling of nanoparticle deposition in the nasal cavity and the tracheobronchial airway. Computer Methods in Biomechanics and Biomedical Engineering, 14: 633–643.CrossRefGoogle Scholar
  39. Kelly, J. T., Asgharian, B., Kimbell, J. S., Wong, B. A. 2004. Particle deposition in human nasal airway replicas manufactured by different methods. Part II: Ultrafine particles. Aerosol Sci Tech, 38: 1072–1079.CrossRefGoogle Scholar
  40. Kennedy, N. J., Hinds, W. C. 2002. Inhalability of large solid particles. J Aerosol Sci, 33: 237–255.CrossRefGoogle Scholar
  41. Kim, T., Flynn, M. R. 1991. Airflow pattern around a worker in a uniform freestream. Am Ind Hyg Assoc J, 52: 287–296.CrossRefGoogle Scholar
  42. King Se, C. M., Inthavong, K., Tu, J. Y. 2010. Inhalability of micron particles through the nose and mouth. Inhal Toxicol, 22: 287–300.CrossRefGoogle Scholar
  43. Kulmala, I., Säämänen, A., Enbom, S. 1996. The effect of contaminant source location on worker exposure in the near-wake region. Ann Occup Hyg, 40: 511–523.CrossRefGoogle Scholar
  44. Lai, A., Nazaroff, W. 2005. Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces. Atmos Environ, 39: 4893–4900.CrossRefGoogle Scholar
  45. Li, K. Q., Gong, G. C. 2012. Numerical simulation of indoor suspension particles based on v2-F model. Appl Math Model, 36: 2510–2520.MathSciNetzbMATHCrossRefGoogle Scholar
  46. Li, X. D., Inthavong, K., Tu, J. Y. 2012. Particle inhalation and deposition in a human nasal cavity from the external surrounding environment. Build Environ, 47: 32–39.CrossRefGoogle Scholar
  47. Liu, S. C., Novoselac, A. 2014. Lagrangian particle modeling in the indoor environment: A comparison of RANS and LES turbulence methods (RP-1512). HVAC&R Res, 20: 480–495.CrossRefGoogle Scholar
  48. Liu, Y., Matida, E. A., Gu, J. J., Johnson, M. R. 2007. Numerical simulation of aerosol deposition in a 3-D human nasal cavity using RANS, RANS/EIM, and LES. J Aerosol Sci, 38: 683–700.CrossRefGoogle Scholar
  49. Longest, P. W., Xi, J. X. 2007. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci Tech, 41: 380–397.CrossRefGoogle Scholar
  50. Luongo, J. C., Fennelly, K. P., Keen, J. A., Zhai, Z. J., Jones, B. W., Miller, S. L. 2016. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings. Indoor Air, 26: 666–678.CrossRefGoogle Scholar
  51. Mistry, A., Stolnik, S., Illum, L. 2009. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharmaceut, 379: 146–157.CrossRefGoogle Scholar
  52. Murakami, S. 1992. Diffusion characteristics of airborne particles with gravitational setting in an convection-dominant indoor flow field. ASHRAE Transactions, 98: 82–97.Google Scholar
  53. Murakami, S. 2004. Analysis and design of micro-climate around the human body with respiration by CFD. Indoor Air, 14: 144–156.CrossRefGoogle Scholar
  54. Nazaroff, W. W. 2008. Inhalation intake fraction of pollutants from episodic indoor emissions. Build Environ, 43: 269–277.CrossRefGoogle Scholar
  55. Nielsen, P. B., Kato, S., Chen, Q. 1998. The selection of turbulence models for prediction of room airflow. ASHRAE Transactions, 104: 1119–1127.Google Scholar
  56. Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., Cox, C. 2004. Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol, 16: 437–445.CrossRefGoogle Scholar
  57. Oberoi, R. C., Choi, J.-I., Edwards, J. R., Rosati, J. A., Thornburg, J., Rodes, C. E. 2010. Human-induced particle Re-suspension in a room. Aerosol Sci Tech, 44: 216–229.CrossRefGoogle Scholar
  58. Poussou, S. B., Mazumdar, S., Plesniak, M. W., Sojka, P. E., Chen, Q. Y. 2010. Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions. Atmos Environ, 44: 2830–2839.CrossRefGoogle Scholar
  59. Rygg, A., Longest, P. W. 2016. Absorption and clearance of pharmaceutical aerosols in the human nose: Development of a CFD model. J Aerosol Med Pulm D, 29: 416–431.CrossRefGoogle Scholar
  60. Shang, Y. D., Dong, J. L., Inthavong, K., Tu, J. Y. 2015a. Comparative numerical modeling of inhaled micron-sized particle deposition in human and rat nasal cavities. Inhal Toxicol, 27: 694–705.CrossRefGoogle Scholar
  61. Shang, Y. D., Inthavong, K., Tu, J. Y. 2015b. Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput Fluids, 114: 141–150.MathSciNetzbMATHCrossRefGoogle Scholar
  62. Shang, Y., Inthavong, K., Tu, J. 2019. Development of a computational fluid dynamics model for mucociliary clearance in the nasal cavity. J Biomech, 85: 74–83.CrossRefGoogle Scholar
  63. Shi, H., Kleinstreuer, C., Zhang, Z. 2006. Laminar airflow and nanoparticle or vapor deposition in a human nasal cavity model. J Biomech Eng, 128: 697–706.CrossRefGoogle Scholar
  64. Sleeth, D. K., Vincent, J. H. 2009. Inhalability for aerosols at ultra-low windspeeds. J Phys: Conf Ser, 151: 012062.Google Scholar
  65. Stöber, W. 1972. Dynamic shape factors of nonspherical aerosol particles. In: Assessment of Airborne Particles. Charles Thomas: 249–289.Google Scholar
  66. Tao, Y., Inthavong, K., Tu, J. Y. 2017a. Computational fluid dynamics study of human-induced wake and particle dispersion in indoor environment. Indoor Built Environ, 26: 185–198.CrossRefGoogle Scholar
  67. Tao, Y., Inthavong, K., Tu, J. Y. 2017b. Dynamic meshing modelling for particle resuspension caused by swinging manikin motion. Build Environ, 123: 529–542.CrossRefGoogle Scholar
  68. Tao, Y., Inthavong, K., Tu, J. Y. 2017c. A numerical investigation of wind environment around a walking human body. J Wind Eng Ind Aerod, 168: 9–19.CrossRefGoogle Scholar
  69. Taylor, D. J., Doorly, D. J., Schroter, R. C. 2010. Inflow boundary profile prescription for numerical simulation of nasal airflow. J Roy Soc Interface, 7: 515–527.CrossRefGoogle Scholar
  70. Thatcher, T. L., Wilson, D. J., Wood, E. E., Craig, M. J., Sextro, R. G. 2004. Pollutant dispersion in a large indoor space: Part 1—Scaled experiments using a water-filled model with occupants and furniture. Indoor Air, 14: 258–271.CrossRefGoogle Scholar
  71. Tran-Cong, S., Gay, M., Michaelides, E. E. 2004. Drag coefficients of irregularly shaped particles. Powder Technol, 139: 21–32.CrossRefGoogle Scholar
  72. Wang, J. L., Chow, T.-T. 2011. Numerical investigation of influence of human walking on dispersion and deposition of expiratory droplets in airborne infection isolation room. Build Environ, 46: 1993–2002.CrossRefGoogle Scholar
  73. Wang, S. M., Inthavong, K., Wen, J., Tu, J. Y., Xue, C. L. 2009. Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity. Resp Physiol Neurobi, 166: 142–151.CrossRefGoogle Scholar
  74. Whicker, J. J., Wasiolek, P. T., Tavani, R. A. 2002. Influence of room geometry and ventilation rate on airflow and aerosol dispersion: implications for worker protection. Health Phys, 82: 52–63.CrossRefGoogle Scholar
  75. Xi, J. X., Kim, J., Si, X. A. 2016. Effects of nostril orientation on airflow dynamics, heat exchange, and particle depositions in human noses. Eur J Mech B-Fluid, 55: 215–228.MathSciNetzbMATHCrossRefGoogle Scholar
  76. Xiong, G. X., Zhan, J. M., Zuo, K. J., Li, J. F., Rong, L. W., Xu, G. 2008. Numerical flow simulation in the post-endoscopic sinus surgery nasal cavity. Med Biol Eng Comput, 46: 1161–1167.CrossRefGoogle Scholar
  77. Yu, G., Zhang, Z., Lessmann, R. 1998. Fluid flow and particle diffusion in the human upper respiratory system. Aerosol Sci Tech, 28: 146–158.CrossRefGoogle Scholar
  78. Zamankhan, P., Ahmadi, G., Wang, Z., Hopke, P. K., Cheng, Y.-S., Chung Su, W., Leonard, D. 2006. Airflow and deposition of nanoparticles in a human nasal cavity. Aerosol Sci Tech, 40: 463–476CrossRefGoogle Scholar
  79. Zhang, Z., Chen, Q. 2009. Prediction of particle deposition onto indoor surfaces by CFD with a modified Lagrangian method. Atmos Environ, 43: 319–328.CrossRefGoogle Scholar
  80. Zhang, Z., Zhang, W., Zhai, Z. J., Chen, Q. Y. 2007. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—comparison with experimental data from literature. HVAC&R Res, 13: 871–886.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  1. 1.School of EngineeringRMIT UniversityBundooraAustralia

Personalised recommendations