Advertisement

A CFD study on the effect of size of fuel sphere on PBR core

  • M. S. LatifiEmail author
  • G. Colangelo
  • G. Starace
Research Article
  • 108 Downloads

Abstract

In this work, a thermal-hydraulic investigation of N2 as a coolant in a pebble bed reactor core has been performed using a porous media approach. Three different diameters of fuel sphere have been employed for the numerical simulations. The pebble bed reactor is a kind of packed bed reactor whose core is a long right circular cylinder with a height of 3.5 m and an outer diameter of 3.7 m. The finite volume method was used to solve the governing equations using ANSYS FLUENT 14.5. Several important thermal-hydraulic parameters have been investigated consisting of the coolant and solid temperatures, density, pressure drop, and the coolant temperature.

Keywords

CFD pebble bed heat transfer 

References

  1. ANSYS Inc. 2012. FLUENT R14.5 User’s Guide.Google Scholar
  2. Ergun, S. 1952. Fluid flow through packed columns. Journal of Chemical Engineering Progress, 48: 89–94.Google Scholar
  3. Eskom Ltd. 2000. PBMR safety analysis report.Google Scholar
  4. Ferziger, J. H., Perić, M. 2002. Computational Methods for Fluid Dynamics, 3rd edn. Springer.CrossRefGoogle Scholar
  5. Hsu, C.-T. 2000. Heat conduction in porous media. In: Handbook of Porous Media. Vafai, K. Ed. Marcel Dekker, Inc.Google Scholar
  6. Jeschar, J. 1964. Pressure drop in a packed bed of spheres. Archive for the Iron and Steel Industry, 35: 91–108.Google Scholar
  7. Kaviany, M. 2012. Principles of Heat Transfer in Porous Media. Springer Science & Business Media.zbMATHGoogle Scholar
  8. Kugeler, K., Schulten, R. 1989. High Temperature Reactor Technology. Springer Verlag.Google Scholar
  9. Latifi, M. S. 2018. Numerical modeling of thermal-fluid behavior of the S-CO2 cooled pebble bed reactor. Alexandria Eng J, 57: 3995–4001.CrossRefGoogle Scholar
  10. Latifi, M. S., du Toit, C. G. 2019. A numerical study to investigate the effect of inlet Reynolds number on thermal-fluid phenomena in the supercritical carbon dioxide-cooled pebble bed reactor. Arab J Sci Eng, 44: 981–991.CrossRefGoogle Scholar
  11. Latifi, M. S., Setayeshi, S. 2016a. Effects of porosity on thermal-fluid phenomena in PBMR core. J Therm Eng, 2: 853–860.Google Scholar
  12. Latifi, M. S., Setayeshi, S. 2016b. Numerical simulation of thermal fluid ynamics in the PBMR core. Special Topics & Reviews in Porous Media: An International Journal, 7: 67–76.CrossRefGoogle Scholar
  13. Latifi, M. S., Setayeshi, S., Starace, G., Fiorentino, M. 2016. A numerical investigation on the influence of porosity on the steady-state and transient thermal-hydraulic behaviour of the PBMR. ASME J Heat Transfer, 138: 102003.CrossRefGoogle Scholar
  14. Lee, J.-J., Park, G.-C., Kim, K.-Y., Lee, W.-J. 2007a. Numerical treatment of pebble contact in the flow and heat transfer analysis of a pebble bed reactor core. Nucl Eng Des, 237: 2183–2196.CrossRefGoogle Scholar
  15. Lee, J.-J., Yoon, S.-J., Park, G.-C., Lee, W.-J. 2007b. Turbulence-induced heat transfer in PBMR core using LES and RANS. J Nucl Sci Technol, 44: 985–996.CrossRefGoogle Scholar
  16. Li, H., Qiu, S. Z., Zhang, Y. J., Su, G. H., Tian, W. X. 2012. Thermal hydraulic investigations with different fuel diameters of pebble bed water cooled reactor in CFD simulation. Ann Nucl Energ, 42: 135–147.CrossRefGoogle Scholar
  17. Macdonald, I. F., El-Sayed, M. S., Mow, K., Dullien, F. A. L. 1979. Flow through porous media-the Ergun equation revisited. Ind Eng Chem Fund, 18: 199–208.CrossRefGoogle Scholar
  18. Oh, C. H., Kim, E. S., Sherman, S., Kim, J. H., No, H. C. 2008. Application of gamma code coupled with turbomachinery models for high temperature gas-cooled reactors. In: Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery.Google Scholar
  19. Pantankar, S. V. 1980. Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing.Google Scholar
  20. Sun, X. M., Dong, Y. J., Hao, P. F., Shi, L., Li, F., Feng, Y. T. 2017. Three-dimensional numerical simulation of quasi-static pebble flow. Adv Powder Technol, 28: 499–505.CrossRefGoogle Scholar
  21. Taylor, J. B., Yavuzkurt, S., Baratta, A. J. 2002. Modeling of the fluid flow and heat transfer in a pebble bed modular reactor core with a computational fluid dynamics code. In: Proceedings of the 10th International Conference on Nuclear Engineering, 2: 649–658.CrossRefGoogle Scholar
  22. Venter, P. J., Mitchell, M. N., Fortier, F. 2005. PBMR reactor design and development. In: Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology.Google Scholar
  23. Viljoen, C. F., van Rooyen, W. J., Mtyobile, V. 2006. The use of CFD in the design of PBMR test facilities. In: Proceeding of the 3rd International Topical Meeting on High Temperature Reactor Technology.Google Scholar
  24. Visser, C. J. 2007. Modelling heat and mass through packed bed pebble beds: A heterogeneous volume-averaged approach. Master Dissertation. University of Pretoria.Google Scholar
  25. Wu, H., Gui, N., Yang, X. T., Tu, J. Y., Jiang, S. Y. 2018. A smoothed void fraction method for CFD-DEM simulation of packed pebble beds with particle thermal radiation. Int J Heat Mass Tran, 118: 275–288.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  1. 1.Amirkabir University of TechnologyTehranIran
  2. 2.Department of Engineering for InnovationUniversity of SalentoLecceItaly

Personalised recommendations