Advertisement

Experimental and Computational Multiphase Flow

, Volume 2, Issue 4, pp 212–224 | Cite as

Effect of interfacial drag force model on code prediction for upward adiabatic two-phase bubbly flow in vertical channels

  • Takashi HibikiEmail author
  • Tetsuhiro Ozaki
Research Article
  • 258 Downloads

Abstract

Accurate modeling of the interfacial drag force is one of the keys to predicting thermo-fluid parameters using one-dimensional nuclear thermal-hydraulic system analysis code architected through the two-fluid model. The interfacial drag force appears in the interfacial momentum transfer term and governs the velocity slip or the relative velocity between gas and liquid phases. The most straightforward method to model the interfacial drag force is to model the force through the drag law (drag law approach). A drag coefficient and interfacial area concentration should be given to close the interfacial drag force model. Among them, the modeling of the interfacial area concentration has been one of the weakest links in the interfacial drag force modeling due to the lack of reliable data covering a wide test condition including prototypic nuclear reactor conditions and lack of physically sound interfacial area model. To avoid a considerable uncertainty in the prediction of the interfacial area concentration, Andersen and Chu (1982) proposed the interfacial drag force model using the drift-flux parameters (Andersen approach). The Andersen approach is practical for the simulation of a slow transient flow and a steady flow. Major system analysis codes such as USNRC TRACE have adopted the Andersen approach in the interfacial drag force modeling. Some attempts to improve the code performance have been considered using the drag law approach with the interfacial area transport equation. The dynamic modeling of the interfacial area concentration has the potential to improve the prediction accuracy of the interfacial area concentration in a transient flow and developing flow. Due to the importance of the improved interfacial drag force modeling, the implementation and evaluation of the interfacial area transport equation in USNRC TRACE code has been performed by Talley et al. (2011, 2013). The study claimed that the introduction of the interfacial area transport equation into the TRACE code improved the code performance in an adiabatic bubbly flow analysis significantly. The present study assessed the code calculation made by Talley et al. (2011) and identified several issues in the code calculation results. The present study analytically demonstrated that the drag law approach became identical with the Andersen approach for the distorted particle regime (or a major bubble shape regime in bubbly flow) due to the balancing-out of the interfacial area concentration (or bubble size) in the numerator and denominator of the interfacial drag force formulation. The code calculation using TRAC code endorsed the analytical assessment of the insignificant or no merit of the interfacial area transport equation in the code performance of the adiabatic bubbly flow analysis. The present study also pointed out the inconsistency of the code calculation made by Talley et al. (2011).

Keywords

interfacial area transport equation interfacial drag force interfacial transfer TRACE TRAC 

References

  1. Andersen, J. G. M., Chu, K. H. 1982. BWR refill-reflood program task 4.7: Constitutive relations for shear and heat transfer for the BWR version of TRAC (No. NUREG/CR—2134). General Electric Co.Google Scholar
  2. Borkowski, J. A., Wade, N. L., Rouhani, S. Z., Shumway, R. W., Weaver, W. L., Rettig, W. H., Kullberg, C. L. 1992. TRAC-BF1/MOD1 models and correlations (No. NUREG/CR—4391). Nuclear Regulatory Committee, United States.Google Scholar
  3. Chuang, T. J., Hibiki, T. 2015. Vertical upward two-phase flow CFD using interfacial area transport equation. Prog Nucl Energ, 85: 415–427.CrossRefGoogle Scholar
  4. Fu, X. Y. 2001. Interfacial area measurement and transport modeling in air-water two-phase flow. Ph.D. Thesis. Purdue University.Google Scholar
  5. Hibiki, T., Ishii, M. 1999. Experimental study on interfacial area transport in bubbly two-phase flows. Int J Heat Mass Tran, 42: 3019–3035.CrossRefGoogle Scholar
  6. Hibiki, T., Ishii, M. 2002a. Distribution parameter and drift velocity of drift-flux model in bubbly flow. Int J Heat Mass Tran, 45: 707–721.CrossRefGoogle Scholar
  7. Hibiki, T., Ishii, M. 2002b. Interfacial area concentration of bubbly flow systems. Chem Eng Sci, 57: 3967–3977.CrossRefGoogle Scholar
  8. Hibiki, T., Ishii, M. 2009. Interfacial area transport equations for gas-liquid flow. J Comput Multiphase Flows, 1: 1–22.CrossRefGoogle Scholar
  9. Hibiki, T., Lee, T. H., Lee, J. Y., Ishii, M. 2006. Interfacial area concentration in boiling bubbly flow systems. Chem Eng Sci, 61: 7979–7990.CrossRefGoogle Scholar
  10. Hibiki, T., Ozaki, T. 2017. Modeling of void fraction covariance and relative velocity covariance for upward boiling flow in vertical pipe. Int J Heat Mass Tran, 112: 620–629.CrossRefGoogle Scholar
  11. Hibiki, T., Schlegel, J. P., Ozaki, T., Miwa, S., Rassame, S. 2018. Simplified two-group two-fluid model for three-dimensional two-phase flow computational fluid dynamics for vertical upward flow. Prog Nucl Energ, 108: 503–516.CrossRefGoogle Scholar
  12. Ishii, M., Hibiki, T. 2011. Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn. New York: Springer.CrossRefGoogle Scholar
  13. Kelly, J. M. 1997. Thermal-hydraulic modeling needs for passive reactors. In: Proceedings of the OECD/CSNI Specialist Meeting on Advanced Instrumentation and Measurement Techniques. Kim, S. 1999. Interfacial area transport equation and measurement of local interfacial characteristics. Ph.D. Thesis. Purdue University.Google Scholar
  14. Lin, C. H., Hibiki, T. 2014. Databases of interfacial area concentration in gas-liquid two-phase flow. Prog Nucl Energ, 74: 91–102.CrossRefGoogle Scholar
  15. Mortensen, G. A. 1995. Long-term plan for NRC thermal-hydraulic code development. Report to US NRC under Contract No. DE-AC07-94ID13223.Google Scholar
  16. NRC US. 2008. TRACE V5.0 Theory manual. Field equations, solutions methods, and physical models. Nuclear Regulatory Committee, United States.Google Scholar
  17. Ozaki, T., Hibiki, T., Miwa, S., Mori, M. 2018. Code performance with improved two-group interfacial area concentration correlation for one-dimensional forced convective two-phase flow simulation. J Nucl Sci Technol, 55: 911–930.CrossRefGoogle Scholar
  18. Ozar, B., Dixit, A., Chen, S. W., Hibiki, T., Ishii, M. 2012. Interfacial area concentration in gas-liquid bubbly to churn-turbulent flow regime. Int J Heat Fluid Fl, 38: 168–179.CrossRefGoogle Scholar
  19. Ransom, V. H., Trapp, J., Wagner, R. 2001. RELAP5/MOD3.3 code manual volume IV: Models and correlations. Information System Laboratories, Nuclear Regulatory Committee, United States.Google Scholar
  20. Schlegel, J. P., Hibiki, T. 2015. A correlation for interfacial area concentration in high void fraction flows in large diameter channels. Chem Eng Sci, 131: 172–186.CrossRefGoogle Scholar
  21. Shen, X. Z., Hibiki, T. 2015. Interfacial area concentration in gas-liquid bubbly to churn flow regimes in large diameter pipes. Int J Heat Fluid Fl, 54: 107–118.CrossRefGoogle Scholar
  22. Talley, J. D., Kim, S., Mahaffy, J., Bajorek, S. M., Tien, K. 2011. Implementation and evaluation of one-group interfacial area transport equation in TRACE. Nucl Eng Des, 241: 865–873.CrossRefGoogle Scholar
  23. Talley, J. D., Worosz, T., Kim, S., Bajorek, S. M., Tien, K. 2013. Effect of bubble interactions on the prediction of interfacial area in TRACE. Nucl Eng Des, 264: 135–145.CrossRefGoogle Scholar
  24. Wu, Q., Kim, S., Ishii, M., Beus, S. G. 1998. One-group interfacial area transport in vertical bubbly flow. Int J Heat Mass Tran, 41: 1103–1112.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  1. 1.School of Nuclear EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Nuclear Fuel Industries, Ltd.Yokohama, KanagawaJapan

Personalised recommendations