Experimental and Computational Multiphase Flow

, Volume 1, Issue 4, pp 233–241 | Cite as

Simultaneous measurements of two phases using an optical probe

  • Baranivignesh Prakash
  • Harisinh Parmar
  • Milinkumar T. Shah
  • Vishnu K. Pareek
  • Lefebvre Anthony
  • Ranjeet P. UtikarEmail author
Research Article


For a detailed characterisation of multiphase flows, a local measurement technique that is capable of quantifying both continuous and dispersed phases has to be employed. In the present study, a new optical probe was tested for its ability to provide simultaneous local measurements of gas and liquid/solid in a three-phase system. The new probe can measure the intensity of light reflection due to the presence of gas or liquid medium surrounding the probe tip in conjunction with the Doppler frequency caused by the approach of a solid particle. The experiments were carried out in a pseudo-2D rectangular column by passing gas bubbles through a stationary liquid with suspended seeding particles. In these experiments, measurements were carried out by using three techniques namely optical probe, particle image velocimetry (PIV), and high-speed imaging (HSI). PIV measurements were used to validate seeding particle velocity obtained using the optical probe, whereas HSI technique was used to validate bubble chord length data from optical probe. The difference between the particle velocity from the probe and PIV was in a range of 13%–20%, w hile the difference between chord length measured by the probe and HSI was within ±8%.


experiments multiphase particle image velocimetry (PIV) optical probe 


  1. A2 Photonic Sensors. 2019. Available at
  2. Andreussi, P., di Donfrancesco, A., Messia, M. 1988. An impedance method for the measurement of liquid hold-up in two-phase flow. Int J Multiphase Flow, 14: 777–785.CrossRefGoogle Scholar
  3. Besagni, G., Brazzale, P., Fiocca, A., Inzoli, F. 2016. Estimation of bubble size distributions and shapes in two-phase bubble column using image analysis and optical probes. Flow Meas Instrum, 52: 190–207.CrossRefGoogle Scholar
  4. Cartellier, A. 1992. Simultaneous void fraction measurement, bubble velocity, and size estimate using a single optical probe in gas-liquid two-phase flows. Rev Sci Instrum, 63: 5442–5453.CrossRefGoogle Scholar
  5. Chang, K.-A., Lim, H.-J., Su, C.-B. 2003. Fiber optic reflectometer for velocity and fraction ratio measurements in multiphase flows. Rev Sci Instrum, 74: 3559–3565.CrossRefGoogle Scholar
  6. Chaouki, J., Larachi, F., Dudukovic, M. 1997. Non-Invasive Monitoring of Multiphase Flows. Elsevier.Google Scholar
  7. Chen, R. C., Fan, L.-S. 1992. Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds. Chem Eng Sci, 47: 3615–3622.CrossRefGoogle Scholar
  8. Chugh, D., Roy, S., Shao, J., Al-Dahhan, M. H. 2017. Experimental investigation of gas-liquid flow in monolith channels using monofiber optical probes. AIChE J, 63: 327–336.CrossRefGoogle Scholar
  9. Da Silva, M. J., Schleicher, E., Hampel, U. 2007. Capacitance wire-mesh sensor for fast measurement of phase fraction distributions. Meas Sci Technol, 18: 2245–2251.CrossRefGoogle Scholar
  10. Dong, F., Xu, Y. B., Xu, L. J., Hua, L., Qiao, X. T. 2005. Application of dual-plane ERT system and cross-correlation technique to measure gas-liquid flows in vertical upward pipe. Flow Meas Instrum, 16: 191–197.CrossRefGoogle Scholar
  11. Dyakowski, T. 1996. Process tomography applied to multi-phase flow measurement. Meas Sci Technol, 7: 343–353.CrossRefGoogle Scholar
  12. Elkow, K. J., Rezkallah, K. S. 1996. Void fraction measurements in gas-liquid flows using capacitance sensors. Meas Sci Technol, 7: 1153–1163.CrossRefzbMATHGoogle Scholar
  13. Ferreira, T., Rasband, W. 2012. ImageJ user guide. ImageJ/Fiji, 1: 155–161.Google Scholar
  14. Fossa, M. 1998. Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows. Flow Meas Instrum, 9: 103–109.CrossRefGoogle Scholar
  15. Ismail, I., Gamio, J. C., Bukhari, S. F. A., Yang, W. Q. 2005. Tomography for multi-phase flow measurement in the oil industry. Flow Meas Instrum, 16: 145–155.CrossRefGoogle Scholar
  16. Lee, B. W., Dudukovic, M. P. 2014. Time-series analysis of optical probe measurements in gas-liquid stirred tanks. Chem Eng Sci, 116: 623–634.CrossRefGoogle Scholar
  17. Lucas, P., Mishra, R. 2005. Measurement of bubble velocity components in a swirling gas-liquid pipe flow using a local four-sensor conductance probe. Meas Sci Technol, 16: 749–758.CrossRefGoogle Scholar
  18. Manjrekar, O. N., Dudukovic, M. P. 2015. Application of a 4-point optical probe to a slurry bubble column reactor. Chem Eng Sci, 131: 313–322.CrossRefGoogle Scholar
  19. McGuinn, R. S., Gysling, D. L., Winston, C. R., Davis, A. R., Faustino, J. M. 2002. Non-intrusive fiber optic pressure sensor for measuring unsteady pressures within a pipe. U.S. Patent No. 6,450,037.Google Scholar
  20. Mokhtari, M., Chaouki, J. 2019. New technique for simultaneous measurement of the local solid and gas holdup by using optical fiber probes in the slurry bubble column. Chem Eng J, 358: 831–841.CrossRefGoogle Scholar
  21. Mota, A., Ferreira, A., Vicente, A. A., Sechet, P., Martins, J. M. F., Teixeira, J. A., Cartellier, A. 2015. Customization of an optical probe device and validation of a signal processing procedure to study gas-liquid-solid flows. Application to a three-phase internal-loop gas-lift bioreactor. Chem Eng Sci, 138: 814–826.Google Scholar
  22. Prakash, B., Bhatelia, T., Wadnerkar, D., Shah, M. T., Pareek, V. K., Utikar, R. P. 2019. Vortex shape and gas-liquid hydrodynamics in unbaffled stirred tank. Can J Chem Eng, 97: 1913–1920.CrossRefGoogle Scholar
  23. Prakash, B., Shah, M. T., Pareek, V. K., Utikar, R. P. 2018. Impact of HSPBT blade angle on gas phase hydrodynamics in a gas-liquid stirred tank. Chem Eng Res Des, 130: 219–229.CrossRefGoogle Scholar
  24. Prasser, H.-M., Böttger, A., Zschau, J. 1998. A new electrode-mesh tomograph for gas-liquid flows. Flow Meas Instrum, 9: 111–119.CrossRefGoogle Scholar
  25. Rahim, R. A., Rahiman, M. H. F., Chan, K. S., Nawawi, S. W. 2007. Non-invasive imaging of liquid/gas flow using ultrasonic transmission-mode tomography. Sensor Actuat A: Phys, 135: 337–345.CrossRefGoogle Scholar
  26. Spajer, M., Bergossi, O., Guignard, M. 1994. A scanning local probe profilometer and reflectometer: Application to optical control of integrated circuits. Opt Commun, 106: 139–145.CrossRefGoogle Scholar
  27. Tyagi, P., Buwa, V. V. 2017. Experimental characterization of dense gas-liquid flow in a bubble column using voidage probes. Chem Eng J, 308: 912–928.CrossRefGoogle Scholar
  28. Wedin, R., Davoust, L., Cartellier, A., Dahlkild, A. 2000. A mono-modal fiber-optices velocimeter for electrochemically generated bubbles. In: Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Dynamics 10–13.Google Scholar
  29. Wolf, H. A., Walter, R. E., Hofmann, L., Cody, G. D., Storch Jr., G. V. 1993. Non-intrusive flow meter for the liquid based on solid, liquid or gas borne sound. U.S. Patent 5,207,107.Google Scholar
  30. Zhai, L.-S., Bian, P., Gao, Z. K., Jin, N. D. 2016. The measurement of local flow parameters for gas-liquid two-phase bubbly flows using a dual-sensor probe array. Chem Eng Sci, 144: 346–363.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  • Baranivignesh Prakash
    • 1
  • Harisinh Parmar
    • 1
  • Milinkumar T. Shah
    • 1
  • Vishnu K. Pareek
    • 1
  • Lefebvre Anthony
    • 2
  • Ranjeet P. Utikar
    • 1
    Email author
  1. 1.Western Australia School of Mines: Minerals, Energy and Chemical EngineeringCurtin UniversityPerthAustralia
  2. 2.A2 Photonic Sensors SASGrenobleFrance

Personalised recommendations