Advertisement

Numerical assessment of respiratory airway exposure risks to diesel exhaust particles

  • Jingliang Dong
  • Lin TianEmail author
  • Goodarz Ahmadi
Research Article
  • 20 Downloads

Abstract

Exposure to ambient air pollution presents great adverse health risks to respiratory health, and assessing the respiratory exposure doses, especially in the human deep lung regions, remains difficult due to the sheer complexity of the process. To bridge this gap, an extended large-to-small conducting lung airway model was adopted in this study, which includes a broad scope containing bronchial airways up to the 15th generation. Accumulation mode particles in the size range of 100 nm to 3.0 μm representing major size spectrum of coarse diesel exhaust were released at the inlet of respiratory airway model, and both airflow and particle deposition characteristics were numerically investigated. The simulation results showed that the particle deposition in the respiratory airway is sensitive to the variation of inhalation flow rates. For inhalation exposure at lower breathing rate of 18 L/min, both deposited diffusive and inertia particles were very unevenly distributed in the lower respiratory airway. For inhalation exposure at higher breathing rate of 50 L/min, deposited diffusive and inertia particles were both scattered over the lower respiratory airway. In addition, high inhalation flow rate enabled inertia particles to be deposited further d ownstream of the airway with deposition hot spots observed in distal airways.

Keywords

diesel exhaust respiratory airway occupational hygiene accumulation mode particles lobar deposition 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Nos. 91643102 and 81700094) and Australian Research Council (Project ID: DP160101953 and DE180101138).

References

  1. Corley, R. A., Kabilan, S., Kuprat, A. P., Carson, J. P., Minard, K. R., Jacob, R. E., Timchalk, C., Glenny, R., Pipavath, S., Cox, T., Wallis, C. D., Larson, R. F., Fanucchi, M. V., Postlethwait, E. M., Einstein, D. R. 2012. Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human. Toxicol Sci, 128: 500–516.CrossRefGoogle Scholar
  2. Dong, J., Inthavong, K., Tu, J. 2017. Multiphase flows in biomedical applications. In: Handbook of Multiphase Flow Science and Technology. Yeoh, G. H. Ed. Singapore: Springer Singapore.Google Scholar
  3. Ema, M., Naya, M., Horimoto, M., Kato, H. 2013. Developmental toxicity of diesel exhaust: A review of studies in experimental animals. Reprod Toxicol, 42: 1–17.CrossRefGoogle Scholar
  4. Ge, Q. J., Inthavong, K., Tu, J. Y. 2012. Local deposition fractions of ultrafine particles in a human nasal-sinus cavity CFD model. Inhal Toxicol, 24: 492–505.CrossRefGoogle Scholar
  5. Holmér, I., Kuklane, K., Gao, C. 2007. Minute volumes and inspiratory flow rates during exhaustive treadmill walking using respirators. Ann Occup Hyg, 51: 327–335.Google Scholar
  6. Horsfield, K., Dart, G., Olson, D. E., Filley, G. F., Cumming, G. 1971. Models of the human bronchial tree. J Appl Physiol, 31: 207–217.CrossRefGoogle Scholar
  7. Inthavong, K., Tian, L., Tu, J. 2016. Lagrangian particle modelling of spherical nanoparticle dispersion and deposition in confined flows. J Aerosol Sci, 96: 56–68.CrossRefGoogle Scholar
  8. Inthavong, K., Tu, J., Ahmadi, G. 2009. Computational modelling of gas-particle flows with different particle morphology in the human nasal cavity. J Comput Multiphase Flows, 1: 57–82.MathSciNetCrossRefGoogle Scholar
  9. Islam, M. S., Saha, S. C., Sauret, E., Gemci, T., Gu, Y. T. 2017. Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract. J Aerosol Sci, 108: 29–43.CrossRefGoogle Scholar
  10. Kolanjiyil, A. V., Kleinstreuer, C. 2017. Computational analysis of aerosol-dynamics in a human whole-lung airway model. J Aerosol Sci, 114: 301–316.CrossRefGoogle Scholar
  11. Li, A., Ahmadi, G. 1992. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci Tech, 16: 209–226.CrossRefGoogle Scholar
  12. Longest, P. W., Oldham, M. J. 2008. Numerical and experimental deposition of fine respiratory aerosols: Development of a twophase drift flux model with near-wall velocity corrections. J Aerosol Sci, 39: 48–70.CrossRefGoogle Scholar
  13. Longest, P. W., Vinchurkar, S., Martonen, T. 2006. Transport and deposition of respiratory aerosols in models of childhood asthma. J Aerosol Sci, 37: 1234–1257.CrossRefGoogle Scholar
  14. Longest, P. W., Xi, J. 2007. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci Tech, 41: 380–397.CrossRefGoogle Scholar
  15. Ounis, H., Ahmadi, G., Mclaughlin, J. B. 1991. Brownian diffusion of submicrometer particles in the viscous sublayer. J Colloid Interf Sci, 143: 266–277.CrossRefGoogle Scholar
  16. Peters, S., Carey, R. N., Driscoll, T. R., Glass, D. C., Benke, G., Reid, A., Fritschi, L. 2015. The Australian work exposures study: Prevalence of occupational exposure to diesel engine exhaust. Ann Occup Hyg, 59: 600–608.Google Scholar
  17. Pichelstorfer, L., Winkler-Heil, R., Hofmann, W. 2013. Lagrangian/Eulerian model of coagulation and deposition of inhaled particles in the human lung. J Aerosol Sci, 64: 125–142.CrossRefGoogle Scholar
  18. Riedl, M. A., Diaz-Sanchez, D., Linn, W. S., Gong, H., Jr., Clark, K. W., Effros, R. M., Miller, J. W., Cocker, D. R., Berhane, K. T. 2012. Allergic inflammation in the human lower respiratory tract affected by exposure to diesel exhaust. Res Rep Health Eff Inst, 165: 5–43; discussion 45–64.Google Scholar
  19. Rissler, J., Swietlicki, E., Bengtsson, A., Boman, C., Pagels, J., Sandström, T., Blomberg, A., Löndahl, J. 2012. Experimental determination of deposition of diesel exhaust particles in the human respiratory tract. J Aerosol Sci, 48: 18–33.CrossRefGoogle Scholar
  20. Shang, Y., Dong, J., Tian, L., Inthavong, K., Tu, J. 2019. Detailed computational analysis of flow dynamics in an extended respiratory airway model. Clin Biomech, 61: 105–111.CrossRefGoogle Scholar
  21. Spiegel, M., Redel, T., Zhang, Y. J., Struffert, T., Hornegger, J., Grossman, R. G., Doerfler, A., Karmonik, C. 2011. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation. Comput Methods Biomech Biomed Eng, 14: 9–22.CrossRefGoogle Scholar
  22. Sul, B., Oppito, Z., Jayasekera, S., Vanger, B., Zeller, A., Morris, M., Ruppert, K., Altes, T., Rakesh, V., Day, S., Robinson, R., Reifman, J., Wallqvist, A. 2018. Assessing airflow sensitivity to healthy and diseased lung conditions in a computational fluid dynamics model validated in vitro. J Biomech Eng 140: 051009.CrossRefGoogle Scholar
  23. Tu, J., Inthavong, K., Ahmadi, G. 2012. The human respiratory system. In: Computational Fluid and Particle Dynamics in the Human Respiratory System. Tu, J., Inthavong, K., Ahmadi, G. Eds. Dordrecht: Springer Netherlands.Google Scholar
  24. Tu, J., Inthavong, K., Wong, K. K. L. 2015. Geometric model reconstruction. In: Computational Hemodynamics—Theory, Modelling And Applications. Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  25. Wade, J. F. 3rd., Newman, L. S. 1993. Diesel asthma. Reactive airways disease following overexposure to locomotive exhaust. J Occup Med, 35: 149–154.Google Scholar
  26. Weibel, E. R. 1963. Principles and methods for morphometric study of lung and other organs. Lab Invest, 12: 131–155.Google Scholar
  27. Yu, G., Zhang, Z., Lessmann, R. 1996. Computer simulation of the flow field and particle deposition by diffusion in a 3-D human airway bifurcation. Aerosol Sci Tech, 25: 338–352.CrossRefGoogle Scholar
  28. Zhang, Z., Kleinstreuer, C. 2011. Computational analysis of airflow and nanoparticle deposition in a combined nasal–oral–tracheobronchial airway model. J Aerosol Sci, 42: 174–194.CrossRefGoogle Scholar
  29. Zhang, Z., Kleinstreuer, C., Donohue, J. F., Kim, C. S. 2005. Comparison of micro- and nano-size particle depositions in a human upper airway model. J Aerosol Sci, 36: 211–233.CrossRefGoogle Scholar
  30. Zhang, Z., Kleinstreuer, C., Kim, C. S. 2009. Comparison of analytical and CFD models with regard to micron particle deposition in a human 16-generation tracheobronchial airway model. J Aerosol Sci, 40: 16–28.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press 2019

Authors and Affiliations

  1. 1.School of EngineeringRMIT UniversityBundooraAustralia
  2. 2.Department of Aeronautical and Mechanical EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations