Advertisement

The Co-inoculation of Rhizobium and Bradyrhizobium Increases the Early Nodulation and Development of Common Beans

  • Rita Hilário de Carvalho
  • Ederson da Conceição JesusEmail author
  • Vinício Oliosi Favero
  • Rosângela Straliotto
  • Adelson Paulo Araújo
Short Communication

Abstract

It has recently been shown that the co-inoculation of Rhizobium tropici and Bradyrhizobium spp. can benefit the nodulation, development, and biological nitrogen fixation of common beans (Phaseolus vulgaris L.). Here, we compared this type of co-inoculation with the co-inoculation of Azospirillum brasilense on two common bean cultivars and evaluated whether they can stimulate the early nodulation of this crop, aiming at anticipating the contribution of biological nitrogen fixation to plant nutrition. The co-inoculation with B. elkanii 29w increased the number of nodules in the V3 and V4 stages. Both co-inoculations stimulated a larger mass of nodules and larger shoot biomass during the V4 stage. The co-inoculation of Bradyrhizobium also stimulated root growth. The co-inoculation effects were consistent for the two tested cultivars, but some differences in response indicate a possible genotype effect. We can conclude that the co-inoculation of B. elkanii benefits the common bean during the early stages of its cycle. These effects are comparable with the effects of the co-inoculation with Azospirillum brasilense Sp 245.

Keywords

Nodulation Phenological phase Mixed inoculation Strains Biomass 

Notes

Funding Information

We thank the Brazilian National Council for Scientific and Technological Development (CNPq) and the Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (FAPERJ) for their financial support (projects 307872/2016-5 and E-26/202.683/2018, respectively); the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship provided to Rita Hilário de Carvalho; and CNPq for the research fellowship provided to Ederson da Conceição Jesus (project 475168/2012-7). This work is also sponsored by the INCT—Plant Growth-Promoting Microorganisms for Agricultural Sustainability and Environmental Responsibility (CNPq, 465133/2014-4, Fundação Araucária-STI, CAPES).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. Baldani VLD, de B Alvarez MA, Baldani JI, Döbereiner J (1986) Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46.  https://doi.org/10.1007/BF02277385 CrossRefGoogle Scholar
  2. Boddey LH, Hungria M (1997) Phenotypic grouping of Brazilian Bradyrhizobium strains which nodulate soybean. Biol Fertil Soils 25:407–415.  https://doi.org/10.1007/s003740050333 CrossRefGoogle Scholar
  3. Brito LF (2013) Iniciação da Nodulação em Cultivares de Feijoeiro. Dissertação (mestrado)–Universidade Federal Rural do Rio de Janeiro, Curso de Pós-Graduação em Agronomia–Ciência do SoloGoogle Scholar
  4. Cassán F, Perrig D, Sgroy V et al (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35.  https://doi.org/10.1016/j.ejsobi.2008.08.005 CrossRefGoogle Scholar
  5. Chibeba AM, de Fátima Guimarães M, Brito OR et al (2015) Co-inoculation of soybean with Bradyrhizobium and Azospirillum promotes early nodulation. Am J Plant Sci 6:1641–1649.  https://doi.org/10.4236/ajps.2015.610164 CrossRefGoogle Scholar
  6. De Mendiburu F (2019) Agricolae: statistical procedures for agricultural research. R Packag version 1Google Scholar
  7. de Souza JEB, Ferreira EP d B (2017) Improving sustainability of common bean production systems by co-inoculating rhizobia and azospirilla. Agric Ecosyst Environ 237:250–257.  https://doi.org/10.1016/j.agee.2016.12.040 CrossRefGoogle Scholar
  8. Devi MJ, Sinclair TR, Beebe SE, Rao IM (2013) Comparison of common bean (Phaseolus vulgaris L.) genotypes for nitrogen fixation tolerance to soil drying. Plant Soil 364:29–37.  https://doi.org/10.1007/s11104-012-1330-4 CrossRefGoogle Scholar
  9. Döbereiner J (1966) Evaluation of nitrogen fixation in legumes by the regression of total plant nitrogen with nodule weight [29]. Nature 210:850–852.  https://doi.org/10.1038/210850a0 CrossRefGoogle Scholar
  10. Döbereiner J, Andrade V de O, Baldani VLD (1999) Protocolos para Preparo de Meios de Cultura da Embrapa Agrobiologia. Doc No110 38.  https://doi.org/10.1177/002085235802400214
  11. Figueiredo MVB, Sobral JK, Stamford TLM, Araújo JM (2010) Bactérias promotoras do crescimento de plantas: estratégia para uma agricultura sustentável. Biotecnol Apl à Agric textos apoio e Protoc Exp Embrapa Agrobiol Brazil 387–414Google Scholar
  12. Hardarson G, Bliss FA, Cigales-Rivero MR, Henson RA, Kipe-Nolt JA, Longeri L, Manrique A, Pena-Cabriales JJ, Pereira PAA, Sanabria CA, Tsai SM (1993) Genotypic variation in biological nitrogen fixation by common bean. Enhanc Biol Nitrogen Fixat Common Bean Lat Am:59–70.  https://doi.org/10.1007/978-94-011-2100-2_5 CrossRefGoogle Scholar
  13. Hungria M, Andrade DDS, Chueire LMDO et al (2000) Isolation and characterization of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528.  https://doi.org/10.1016/S0038-0717(00)00063-8 CrossRefGoogle Scholar
  14. Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:791–801.  https://doi.org/10.1007/s00374-012-0771-5 CrossRefGoogle Scholar
  15. Hungria M, Nogueira MA, Araujo RS (2015) Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. Am J Plant Sci 6:811–817.  https://doi.org/10.4236/ajps.2015.66087 CrossRefGoogle Scholar
  16. Jesus E d C, Leite R d A, Bastos R d A et al (2018) Co-inoculation of Bradyrhizobium stimulates the symbiosis efficiency of Rhizobium with common bean. Plant Soil 425:201–215.  https://doi.org/10.1007/s11104-017-3541-1 CrossRefGoogle Scholar
  17. Liao CFH (1981) Devarda’s alloy method for total nitrogen determination 1. Soil Sci Soc Am J 45:852.  https://doi.org/10.2136/sssaj1981.03615995004500050005x CrossRefGoogle Scholar
  18. Mabood F, Zhou X, Smith DL (2014) Microbial signaling and plant growth promotion. Can J Plant Sci 94:1051–1063.  https://doi.org/10.4141/CJPS2013-148 CrossRefGoogle Scholar
  19. Martinez-Romero E, Segovia L, Mercante FM et al (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426.  https://doi.org/10.1099/00207713-41-3-417 CrossRefPubMedGoogle Scholar
  20. Norris DO, Mannetje L’ (1964) The symbiotic specialization of African Trifolium Spp. in relation to their taxonomy and their agronomic use. East African Agric For J 29:214–235.  https://doi.org/10.1080/00128325.1964.11661928 CrossRefGoogle Scholar
  21. Oliveira DP, de Figueiredo MA, Soares BL et al (2017) Acid tolerant Rhizobium strains contribute to increasing the yield and profitability of common bean in tropical soils. J Soil Sci Plant Nutr 17:922–934.  https://doi.org/10.4067/S0718-95162017000400007 CrossRefGoogle Scholar
  22. R Foundation for Statistical Computing RC (2015) R: A language and environment for statistical computingGoogle Scholar
  23. Remans R, Ramaekers L, Schelkens S et al (2008) Effect of Rhizobium-Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312:25–37.  https://doi.org/10.1007/s11104-008-9606-4 CrossRefGoogle Scholar
  24. Xavier TF, De Araújo ASF, Dos Santos VB, Campos FL (2007) Ontogenia da nodulação em duas cultivares de feijão-caupi. Cienc Rural 37:561–564.  https://doi.org/10.1590/s0103-84782007000200042 CrossRefGoogle Scholar
  25. Yadegari M, Asadi Rahmani H, Noormohammadi G, Ayneband A (2010) Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. J Plant Nutr 33:1733–1743.  https://doi.org/10.1080/01904167.2010.503776 CrossRefGoogle Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2020

Authors and Affiliations

  1. 1.Universidade Federal Rural do Rio de Janeiro-UFRRJSeropédicaBrazil
  2. 2.Empresa Brasileira de Pesquisa Agropecuária – Centro Nacional de Pesquisa de AgrobiologiaSeropédicaBrazil
  3. 3.Empresa Brasileira de Pesquisa Agropecuária – Centro Nacional de Pesquisa de SolosRio de JaneiroBrazil

Personalised recommendations