Revisiting the Nature of Phosphorus Pools in Chilean Volcanic Soils as a Basis for Arbuscular Mycorrhizal Management in Plant P Acquisition

  • Fernando Borie
  • Paula Aguilera
  • Claudia Castillo
  • Alexander Valentine
  • Alex Seguel
  • José Miguel Barea
  • Pablo CornejoEmail author


This review covers the nature, characteristics, and reactivity of soil organic matter (SOM) in volcanic soils and the phosphorus (P) accumulation mainly via the formation of stable complexes with organic and inorganic constituents to form P-containing macromolecules derived from both pedogenesis and fertilization. With the time, P accumulates as organic and inorganic compounds with differing lability, but the bulk appears to be recalcitrant. Chilean volcanic soils follow this same trend, subsequently having detrimental characteristics for plant growth, like the highly humified SOM and high P-sorption capacity. In addition, certain Chilean volcanic soils have high acidity, concomitant with a high exchangeable Al. As a result of the continuous application of P fertilizers, together with a low P efficiency of plant root acquisition, a “P reservoir” has built up, giving rise to the so-called residual P. This residual P consists of the inorganic and organic P, as macromolecular structures representing the cumulative average of several decades worth of agronomic P usage. Root modifications are an essential biological intervention to deal with this P accumulation. The general root modifications that are required to mobilize the residual P are discussed in the context of biochemical modifications (root exudations) and the symbiotic alterations by arbuscular mycorrhizal (AM) fungi. For a more efficient utilization of this accumulated P, however, it is essential to investigate the chemical nature and lability of these P forms in order to determine their capacity for plant acquisition and utilization. In this context, attention is focused on P fractionation and on some 31P-NMR analysis of residual P constituents in Andisols. The major root trait evaluated and discussed here is the AM association, which is able to be extensively modified by management practices. Finally, some potential practices to avoid the excessive application of P fertilizers in volcanic soils by using technologies of P recycling, management of AM fungal populations, or agricultural management for mobilizing the accumulated residual P are outlined.


Andisols Arbuscular mycorrhizal fungi Inorganic P Organic P 


Funding Information

Financial support was received from the FONDECYT 1170264 (P. Cornejo), FONDECYT 11160385 (A. Seguel), and FONDECYT 11170641 (P. Aguilera) grants from the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), Chile. A. Valentine was supported in Chile by a grant from the MEC Program No80170023 (CONICYT). P. Cornejo also thank to CONICYT/FONDAP/15130015.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Aguilera P, Borie F, Seguel A, Cornejo P (2011) Fluorescence detection of aluminum in arbuscular mycorrhizal fungal structures and glomalin using confocal laser scanning microscopy. Soil Biol Biochem 43:2427–2431CrossRefGoogle Scholar
  2. Aguilera P, Cornejo P, Borie F, Barea JM, von Baer E, Oehl F (2015) Diversity of arbuscular mycorrhizal fungi associated to Triticum aestivum L. plants growing in an andosol with phytotoxic aluminum levels. Agric Ecosyst Environ 186:178–184CrossRefGoogle Scholar
  3. Aguilera P, Marín C, Oehl F, Godoy R, Borie F, Cornejo P (2017) Selection of aluminum tolerant cereal genotypes strongly influences the arbuscular mycorrhizal fungal communities in an acidic andosol. Agric Ecosyst Environ 246:86–93CrossRefGoogle Scholar
  4. Aguilera P, Larsen J, Borie F, Berrios D, Tapia C, Cornejo P (2018) New evidences on the contribution of arbuscular mycorrhizal fungi inducing Al tolerance in wheat. Rhizosphere 5:43–50CrossRefGoogle Scholar
  5. Alvear M, Pino M, Castillo C, Trasar-Cepeda C, Gil Sotres F (2006) Effect of no-tillage on some biological activities in an Alfisol from southern Chile. J Soil Sci Plant Nutr 6:38–53Google Scholar
  6. Baker RT (1977) Humic acid associated organic phosphate. N Zeal J Soil Sci 20:439–441Google Scholar
  7. Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2013) Microbial interactions in the rhizosphere. In: de Bruijn F (ed) Molecular microbial ecology of the rhizosphere. Willey-Blackwell, USA, pp 29–44CrossRefGoogle Scholar
  8. Besoain E (1985) Mineralogía de los suelos volcánicos del centro-sur de Chile. In: Tosso J (ed) Suelos Volcánicos de Chile. INIA, pp 107–302Google Scholar
  9. Borie F, Barea JM (1985) Occurrence of lipid-P in volcanic ash derived soils of Chile. Agrochimica 28:317–324Google Scholar
  10. Borie F, Fuentealba R (1982) Biochemistry of soils derived from volcanic ashes. II. Urease activity. Agric Tec (Chile) 42:135–142Google Scholar
  11. Borie F, Rubio R (1999) Effects of arbuscular mycorrhizae and liming on growth and mineral acquisition of aluminum-tolerant and Al-sensitive barley cultivars. J Plant Nutr 22:121–137CrossRefGoogle Scholar
  12. Borie F, Rubio R (2003) Total and organic phosphorus in Chilean volcanic soils. Gayana Bot 60:69–78CrossRefGoogle Scholar
  13. Borie F, Zunino H (1983) Organic matter-phosphorus associations as a sink in P-fixation processes in allophanics soils of Chile. Soil Biol Biochem 15:599–603CrossRefGoogle Scholar
  14. Borie F, Zunino H, Martínez L (1989) Macromolecule-P associations and inositol phosphates in some chilean volcanic soils of temperate regions. Commun Soil Sci Plant Anal 20:1881–1894CrossRefGoogle Scholar
  15. Borie F, Rubio R, Rouanet JL, Morales A, Borie G, Rojas C (2006) Effects of tillage systems on soils characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil Tillage Res 28:253–261CrossRefGoogle Scholar
  16. Borie F, Rubio R, Morales A (2008) Arbuscular mycorrhizal fungi and soil aggregation. J Soil Sci Plant Nutr 8:9–18Google Scholar
  17. Bovill WD, Huang CY, McDonald GK (2013) Genetic approaches to enhancing phosphorus-use efficiency (PUE) in crops: challenges and directions. Crop Pasture Sci 64:179–198CrossRefGoogle Scholar
  18. Briceño M, Escudey M, Galindo G, Borchard D, Chang A (2004) Characterization of chemical phosphorus forms in volcanic soils using 31P-NMR spectroscopy. Commun Soil Sci Plant Anal 35:1323–1335CrossRefGoogle Scholar
  19. Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:33–22CrossRefGoogle Scholar
  20. Campos P, Borie F, Cornejo P, López-Raez JA, López-García A, Seguel A (2018) Phosphorus acquisition efficiency related to root traits: is mycorrhizal Symbiosis a key factor to wheat and barley cropping? Front Plant Sci 9:752CrossRefGoogle Scholar
  21. Casanova M, Salazar O, Seguel O, Luzio W (2013) The soils of Chile. Springer Verlag, LondonCrossRefGoogle Scholar
  22. Castillo C, Rubio R, Rouanet JL, Borie F (2006) Early effect of tillage and crop rotation in arbuscular mycorrhizal fungal propagules in an Ultisol. Biol Fertil Soils 43:83–92CrossRefGoogle Scholar
  23. Castillo CG, Borie F, Oehl F, Sieverding E (2016) Arbuscular mycorrhizal fungi biodiversity: prospecting in southern central zone of Chile. A Review. J Soil Sci Plant Nutr 16:11–24Google Scholar
  24. Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to cu and Zn sequestration. Sci Total Environ 406:154–160CrossRefGoogle Scholar
  25. Cornejo P, Rubio R, Borie F (2009) Mycorrhizal propagules persistence in a succession of cereals in an Andisol disturbed and undisturbed, fertilized with two nitrogen sources. Chilean J Agric Res 69:426–434CrossRefGoogle Scholar
  26. Cornejo P, Meier S, Durán P, García S, Ferrol N, Borie F (2017) Contribution of Bradford-reactive soil protein to the copper sequestration in a cu-polluted soil using Oenothera picensis. J Soil Sci Plant Nutr 17:1–8Google Scholar
  27. Curaqueo G, Barea JM, Acevedo E, Rubio R, Cornejo P, Borie F (2011) Effects of different tillage system on arbuscular mycorrhizal fungal propagules and physical properties in a Mediterranean agroecosystem in Central Chile. Soil Tillage Res 113:11–18CrossRefGoogle Scholar
  28. Dahlgren RA, Saigusa M, Ugolini FC (2004) The nature, properties and management of volcanic soils. Adv Agron 82:113–182CrossRefGoogle Scholar
  29. Delgado M, Zuñiga-Feest A, Alvear M, Borie F (2013) The effect of phosphorus on cluster-root formation and functioning of Embothrium coccineum (R. Et J. Forst.). Plant Soil 373:765–773CrossRefGoogle Scholar
  30. Delgado M, Suriyagoda L, Zuñiga-Feest A, Borie F, Lambers H (2014) Divergent functioning of Proteaceae species: the south American Embothrium coccineum displays a combination of adaptive traits to survive in high-phosphorus soils. Funct Ecol 28:1356–1366CrossRefGoogle Scholar
  31. Dubé F, Stolpe N (2016) SOM and biomass C stocks in degraded and undisturbed Andean and coastal Nothofagus forests of southwestern South America. Forests 7:320–339CrossRefGoogle Scholar
  32. Escudey M, Galindo G, Förster JE, Briceño M, Díaz P, Chang A (2001) Chemical forms of phosphorus of volcanic ash-derived soils in Chile. Commun Soil Sci Plant Anal 32:601–616CrossRefGoogle Scholar
  33. Etcheverria P, Huygens D, Godoy R, Borie F, Boeckx P (2009) Arbuscular mycorrhizal fungi contribute to C-13 and N-15 enrichment of soil organic matter in forest soils. Soil Biol Biochem 41:858–861CrossRefGoogle Scholar
  34. George TS, Giles CD, Menezes-Blackburn D, Condron LM, Gama-Rodrigues AC, Jaisi D, Lang F, Neal AL, Stutter MI, Almeida DS, Bol R, Cabugao KG, Celi L, Cotner JB, Feng G, Goll DS, Hallama M, Krueger J, Plassard C, Rosling A, Darch T, Fraser T, Giesler R, Richardson AE, Tamburini F, Shand CA, Lumsdon DG, Zhang H, Blackwell MSA, Wearing C, Mezeli MM, Almås ÅR, Audette Y, Bertrand I, Beyhaut E, Boitt G, Bradshaw N, Brearley CA, Bruulsema TW, Ciais P, Cozzolino V, Duran PC, Mora ML, de Menezes AB, Dodd RJ, Dunfield K, Engl C, Frazão JJ, Garland G, González Jiménez JL, Graca J, Granger SJ, Harrison AF, Heuck C, Hou EQ, Johnes PJ, Kaiser K, Kjær HA, Klumpp E, Lamb AL, Macintosh KA, Mackay EB, McGrath J, McIntyre C, McLaren T, Mészáros E, Missong A, Mooshammer M, Negrón CP, Nelson LA, Pfahler V, Poblete-Grant P, Randall M, Seguel A, Seth K, Smith AC, Smits MM, Sobarzo JA, Spohn M, Tawaraya K, Tibbett M, Voroney P, Wallander H, Wang L, Wasaki J, Haygarth PM (2018) Organic phosphorus in the terrestrial environments: a perspective on the state of the art and future priorities. Plant Soil 427:191–208CrossRefGoogle Scholar
  35. Gerke G (1997) Aluminum and iron (III) species in the soil solution including organic complexes with citrate and humic substances. Z Pflanzenernahr Bodenkd 160:427–432CrossRefGoogle Scholar
  36. Gerke J (2010) Humic(organic matter)-Al(Fe)-phosphate complexes: an underestimated phosphate form in soils and source of plant-available phosphate. Soil Sci 175:417–425CrossRefGoogle Scholar
  37. Gerke J (2015) Phytate (inositol Hexakisphosphate) in soil and phosphate from inositol phosphates by higher plants. A review. Plants 4:253–266CrossRefGoogle Scholar
  38. Gilbert GA, Knight JD, Vance CP, Allan DL (1999) Acid phosphatase activity in phosphorus-deficient white lupin roots. Plant Cell Environ 22:801–810CrossRefGoogle Scholar
  39. González-Chávez MC, Carrillo-González M, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi in sequestering potentially toxic elements. Environ Pollut 130:317–323CrossRefGoogle Scholar
  40. Gruber BD, Giehl RF, Friedel S, von Wirén N (2013) Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol 163:161–179CrossRefGoogle Scholar
  41. Hedley H, Steward J, Chauhuan B (1982) Changes in organic and inorganic phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976CrossRefGoogle Scholar
  42. Hernández-Soriano MC (2012) The role of aluminum-Organo complexes in soil organic matter dynamics. In: Hernández-Soriano MC (ed) Soil health and land use management. Europe, Croatia, pp 17–32CrossRefGoogle Scholar
  43. Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748CrossRefGoogle Scholar
  44. Hong JK, Yamane I (1981) Distribution of inositol phosphate in the molecular size fractions of humic and fulvic acid fractions. Soil Sci Plant Nutr 27:295–303CrossRefGoogle Scholar
  45. Irving GCJ, Cosgrove DJ (1982) The use of gas liquid chromatography to determine the proportions of inositol isomers present as pentakis- and hexakis-phophates in alkaline extracts of soils. Commun Soil Sci Plant Anal 13:957–967CrossRefGoogle Scholar
  46. Liebish L, Keller F, Huguenin-Ellie O, Frossard E, Oberson A, Büneman EK (2014) Seasonal dynamics and turnover of microbial phosphorus in permanent grassland. Biol Fertil Soils 50:465–475CrossRefGoogle Scholar
  47. Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512CrossRefGoogle Scholar
  48. Ma Q, Rengel Z, Rose TJ (2009) The effectiveness of deep placement of fertilisers is determined by crop species and edaphic conditions in Mediterranean-type environments: a review. Aust J Soil Res 47:19–32CrossRefGoogle Scholar
  49. Madeira M, Füleky G, Auxtero E (2007) Phosphate sorption of European volcanic soils. In: Bartoli F, Buurman P, Arnalds O, Stoops G, Garcia-Rodeja E (eds) Soils of Volcanic Regions of Europe. Springer, Verlag, pp 353–367CrossRefGoogle Scholar
  50. Manske GGB, Ortiz-Monasterio JI, van Ginkel M, González RM, Rajaram S, Molina E, Vlek PLG (2000) Traits associated with improved P-efficiency in CIMMYT’s semodwarf spring wheat grown in an acid andisol in Mexico. Plant Soil 221:189–204CrossRefGoogle Scholar
  51. Marín C, Aguilera P, Cornejo P, Godoy R, Oehl F, Palfner G, Boy J (2016) Arbuscular mycorrhizal assemblages along contrasting andean forest of southern Chile. J Soil Sci Plant Nutr 16:916–929Google Scholar
  52. Mathew RP, Feng Y, Githinji L, Ankumah R, Balkcom KS (2012) Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities. Appl Environ Soil Sci 2012:548620 10 pagesCrossRefGoogle Scholar
  53. McLaren TI, Smernik RJ, McLaughlin MJ, McBeath TM, Kirby JK, Simpson RJ et al (2015) Complex forms of soil organic phosphorus- a major component of soil phosphorus. Environ Sci Technol 49:13238–13245CrossRefGoogle Scholar
  54. Medina J, Monreal C, Chabot D, Meier S, González ME, Morales E, Parillo R, Borie F, Cornejo P (2017) Microscopic and spectroscopic characterization of humic substances from a compost amended copper contaminated soil: Main features and their potential effects on cu immobilization. Environ Sci Pollut Res 24:14104–14116CrossRefGoogle Scholar
  55. Mendoza J, Borie F (1998) The effects of glomus etunicatum inoculation on aluminum, phosphorus, calcium and magnesium uptake in two barley genotypes with different aluminum-tolerance. Commun Soil Sci Plant Anal 9:681–695CrossRefGoogle Scholar
  56. Menezes-Blackburn D, Giles C, Darch T, George TS et al (2018) Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: a review. Plant Soil 417:5–26CrossRefGoogle Scholar
  57. Mora ML, Canales J (1995) Interactions of humic substances with allophanic compounds. Commun Soil Sci Plant Anal 26:2805–2817CrossRefGoogle Scholar
  58. Mora M, Jarvis S, Cartes P (2006) Soil Al availability in Andisols of southern Chile and its effects in forage production and animal metabolism. Soil Use Manag 22:95–101CrossRefGoogle Scholar
  59. Morales A, Alvear M, Valenzuela E, Castillo C, Borie F (2011) Screening, evaluation and selection of phosphate-solubilising fungi as potential biofertilizer. J Soil Sci Plant Nutr 11:89–103CrossRefGoogle Scholar
  60. Neculman R, Rumpel C, Matus F, Godoy R, Steffens M, Mora ML (2013) Organic matter stabilization in two Andisols of contrasting age under temperate rain forest. Biol Fertil Soils 49:681–689CrossRefGoogle Scholar
  61. Nichols KA (2010) Glomalin production and accumulation in soilless pot cultures. Can J Soil Sci 90:567–570CrossRefGoogle Scholar
  62. Oehl F, Sieverding PE, Mäder D, Dubois K, Ineichen T, Boller WA (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583CrossRefGoogle Scholar
  63. Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738CrossRefGoogle Scholar
  64. Pajares N, Gallardo JF, Masciadaro B, Ceccanti B, Etchevers JD (2011) Enzyme activity as an indicator of soil quality changes in degraded cultivated acrisols in the Mexican trans-volcanic belt. Land Degrad Dev 22:373–381CrossRefGoogle Scholar
  65. Panichini M, Neculman R, Godoy R, Arancibia-Miranda N, Matus F (2017) Understanding carbon storage in volcanic soils under selectively logged temperate rainforests. Geoderma 302:76–88CrossRefGoogle Scholar
  66. Pardo MT, Guadalix ME, García-González MT (1992) Effect of pH and background electrolyte on P sorption by variable charge soils. Geoderma 54:275–284CrossRefGoogle Scholar
  67. Parfitt RL (1989) Phosphate reactions with natural allophane, ferrihydrite and goethite. Eur J Soil Sci 40:359–369CrossRefGoogle Scholar
  68. Parfitt RL (2009) Allophane and imogolite: role in soil biochemical processes. Clay Miner 44:135–155CrossRefGoogle Scholar
  69. Peirano P, Borie G, Aguilera M (1987) Biochemistry of soils derived from volcanic ashes. V. Determination of polyphenoloxidases. Agric Tecn (Chile) 47:235–239Google Scholar
  70. Pigna M, Violante A (2003) Adsorption of sulphate and phosphate in Andisols. Commun Soil Sci Plant Anal 34:2099–2113CrossRefGoogle Scholar
  71. Redel Y, Rubio R, Godoy R, Borie F (2008) Phosphorus fractions and phosphatase activity in an Andisol sampled under different forest ecosystems. Geoderma 145:216–221CrossRefGoogle Scholar
  72. Redel Y, Escudey M, Alvear M, Conrad J, Borie F (2011) Effects of tillage and crop rotation on chemical phosphorus and some related biological activities in a Chilean Ultisol. Soil Use Manag 27:221–228CrossRefGoogle Scholar
  73. Redel Y, Escudey M, Alvear M, Conrad J, Borie F (2015) Effects of land use change on P bioavailability determined by chemical fractionation and 31P-NMR spectroscopy in a Nothofagus forest and adjacent grassland. J Soil Sci Plant Nutr 15:1061–1070Google Scholar
  74. Rohyadi A (2005) Spore germination and colonization of Gigaspora margarita as influenced by aluminium concentration. J Microbiol Indones 10:71–74Google Scholar
  75. Rose TJ, Wissuwa M (2012) Rethinking internal phosphorus utilization efficiency. A new approach is needed to improve PUE in grain crops, 1st edn. Elsevier Inc., BurlingtonGoogle Scholar
  76. Rose TS, Rose MT, Tanaka JP, Wissuwa M (2010) Genotypic variation in grain phosphorus concentration, and opportunities to improve P-use efficiency in rice. Field Crop Res 119:154–160CrossRefGoogle Scholar
  77. Rubio R, Moraga A, Borie F (1990) Acid phosphatase activity and vesicular mycorrhizal infection associated with roots of four wheat cultivars. J Plant Nutr 13:585–598CrossRefGoogle Scholar
  78. Rubio R, Borie F, Schalchli C, Castillo C, Azcón R (2003) Occurrence and effects of arbuscular mycorrhizal propagules in wheat as affected by the source and amount of phosphorus fertilizer and fungal inoculation. Appl Soil Ecol 23:245–255CrossRefGoogle Scholar
  79. Rufyikiri G, Declerck C, Dufey JE, Delvaux B (2000) Arbuscular mycorrhizal fungi might alleviate aluminium toxicity in banana plants. New Phytol 148:343–352CrossRefGoogle Scholar
  80. Schnitzer MA (2000) Lifetime perspective on the chemistry of soil organic matter. Adv Agron 68:1–58Google Scholar
  81. Seguel A, Medina J, Rubio R, Cornejo P, Borie F (2012) Effects of soil aluminum on early arbuscular mycorrhizal colonization of wheat and barley cultivars growing in an Andisol. Chilean J Agric Res 72:449–455CrossRefGoogle Scholar
  82. Seguel A, Cumming J, Klug-Stewart K, Cornejo P, Borie F (2013) The role of arbuscular mycorrhizas in decreasing aluminium phytotoxicity in acidic soils: a review. Mycorrhiza 23:167–183CrossRefGoogle Scholar
  83. Seguel A, Barea JM, Cornejo P, Borie F (2015) Role of arbuscular mycorrhizal propagules and glomalin related soil protein in Al tolerance of two barley cultivars growing in acid soils with hihg Al levels. Crop Pasture Sci 66:696–705CrossRefGoogle Scholar
  84. Seguel A, Cumming J, Cornejo P, Borie F (2016) Aluminum tolerance of wheat cultivars in a non-limed and limed Andisol. App Soil Ecol 108:228–237CrossRefGoogle Scholar
  85. Seguel A, Cornejo P, Ramos A, von Baer E, Cumming J, Borie F (2017) Phosphorus acquisition by three wheat cultivars contrasting in aluminum tolerance growing in an aluminum-rich Andisol. Crop Pasture Sci 68:315–316CrossRefGoogle Scholar
  86. Senesi N, Loffredo E (1992) Soil physical chemistry. In: Sparks D (ed) The chemistry of soil organic matter, 5th edn. CRC PressGoogle Scholar
  87. Shoji S, Nanzio M, Dahlgren RA (1993) Volcanic ash soils. Genesis, properties, and utilization. Dev. Soil Sci. 21. Elsevier, AmsterdamGoogle Scholar
  88. Smith SE, Read AJ (2008) Mycorrhizal symbiosis. Academic Press, LondonGoogle Scholar
  89. Takahashi T, Dahlgren RA (2016) Nature, properties and function of aluminum–humus complexes in volcanic soils. Geoderma 263:110–121CrossRefGoogle Scholar
  90. Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks PM (1997) Mineral control of soil organic storage and turnover. Nature 389:170–173CrossRefGoogle Scholar
  91. Ugolini FC, Dahlgren RA (2002) Soil development in volcanic ash. Global Environ Res 6:69–82Google Scholar
  92. Valarini PJ, Curaqueo G, Seguel A, Manzano K, Rubio R, Cornejo P, Borie F (2009) Effect of compost application on some properties of a volcanic soil from central South Chile. Chilen J Agric Res 69:416–425Google Scholar
  93. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–71CrossRefGoogle Scholar
  94. Vance CP, Udhe-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447CrossRefGoogle Scholar
  95. Vaneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC et al (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195:306–320CrossRefGoogle Scholar
  96. Velásquez G, Rumpel C, Redel J, Condron LM, Thi Ngo P, Calabi-Floody M, Turner B, Mora ML (2016) Chemical nature of residual phosphorus in Andisols. Geoderma 271:27–31CrossRefGoogle Scholar
  97. Vistoso E, Theng BKG, Bolan NS, Parfitt RL, Mora ML (2012) Competitive sorption of molybdate and phosphate in Andisols. J Soil Sci Plant Nutr 12:59–72CrossRefGoogle Scholar
  98. Wada K (1985) The distinctive properties of andosols. In: Stewart BA (ed) Advances in soil science, vol. 2. Springer, pp 172–229Google Scholar
  99. Wang L, Liao H, Yan X, Zhuang B, Dong Y (2004) Genetic variability for root hair traits as related to phosphorus status in soybean. Plant Soil 261:77–84CrossRefGoogle Scholar
  100. Zhang L, Ding X, Peng Y, George TS, Feng G (2018) Closing the loop of phosphorus loss from intensive agricultural soil: a microbial immobilization solution? Front Microbiol 9:104CrossRefGoogle Scholar
  101. Zunino H, Borie F, Aguilera M, Martin JP, Haider K (1982a) Decomposition of 14 C-labeled glucose, plant and microbial products and phenols in volcanic-ash derived soils of Chile. Soil Biol Biochem 14:37–43CrossRefGoogle Scholar
  102. Zunino H, Borie F, Aguilera M, Peirano P, Caiozzi M, Martin JP (1982b) Biochemistry of soils derived from volcanic ashes. I. Microbial ecology and its relation with physico-chemical soil properties. Agric Tecn (Chile) 42:67–72Google Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2019

Authors and Affiliations

  • Fernando Borie
    • 1
    • 2
    • 3
  • Paula Aguilera
    • 1
    • 2
  • Claudia Castillo
    • 2
    • 3
  • Alexander Valentine
    • 4
  • Alex Seguel
    • 1
    • 2
  • José Miguel Barea
    • 5
  • Pablo Cornejo
    • 1
    • 2
    Email author
  1. 1.Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA. Departamento de Ciencias Químicas y Recursos NaturalesUniversidad de La FronteraTemucoChile
  2. 2.Scientific and Technological Bioresource Nucleus, BIOREN-UFROUniversidad de La FronteraTemucoChile
  3. 3.Facultad de Recursos NaturalesUniversidad Católica de Temuco, Campus San Juan Pablo IITemucoChile
  4. 4.Botany and Zoology Department, Faculty of ScienceUniversity of StellenboschStellenboschSouth Africa
  5. 5.Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del ZaidínConsejo Superior de Investigaciones Científicas (CSIC)GranadaSpain

Personalised recommendations