Advertisement

Mycorrhizal Colonization and Soil Parameters Affected by Foliar Endophytes in Jatropha curcas L.

  • María Fernanda D’Jonsiles
  • Cecilia Cristina Carmarán
  • Carolina Analía Robles
  • Esteban Daniel Ceriani-Nakamurakare
  • María Victoria NovasEmail author
Research Article
  • 4 Downloads

Abstract

Considering that rhizospheric microorganisms play a critical role in providing the plant nutrients for growth and in the adaptation of plants to ecosystems, the aim of the present study was to evaluate the association between foliar endophytes and their effect on soil and rhizospheric fungi using Jatropha curcas, a promising crop for high-quality biofuel, as a model plant. We conducted a factorial experiment. Endophytes and selected rhizospheric fungi were isolated and identified, and the colonization of mycorrhizal fungi was recorded. While the most interesting result was the significant increase in mycorrhizal colonization when J. curcas was associated with endophytes, it was also evident that this association is able to modulate some soil chemical parameters. This study suggests that the association between J. curcas and endophytes has an impact on specific root symbiotic fungi that usually plays relevant roles in nutrient availability for plants, and it would provide tools to enhance plant growth and oil yields.

Keywords

Arbuscular mycorrhizal fungi Microbiota Plant-microbe interactions P-solubilizers 

Notes

Acknowledgements

We thank Diego Wassner for providing the seeds, Viviana Barrera for providing some of the reagents for the selective media, and Esteban Español for his help and recommendations for molecular studies.

Funding Information

This study was financially supported by the Consejo Nacional de Investigaciones Científicas y Técnicas [PIP 11220110100846] and UBACyT [20020150100067BA], Argentina.

Supplementary material

42729_2019_33_MOESM1_ESM.docx (874 kb)
ESM 1 (DOCX 873 kb)

References

  1. Achten WMJ, Nielsen LR, Aerts R, Lengkeek AG, Kjær ED, Trabucco A, Hansen JK, Maes WH, Graudal L, Akinnifesi FK, Muys B (2010) Towards domestication of Jatropha curcas. Biofuels 1:91–107CrossRefGoogle Scholar
  2. Anaya AL, Saucedo-García A, Contreras-Ramos SM, Cruz-Ortega R (2013) Plant-mycorrhizae and endophytic fungi interactions: broad spectrum of allelopathy studies. In: Chemma XA, Farooq M, Wahid A (eds) Allelopathy. Springer, Berlin Heidelberg, pp 55–80CrossRefGoogle Scholar
  3. Antunes PM, Miller J, Carvalho LM, Klironomos JN, Newman JA (2008) Even after death the endophytic fungus of Schedonorus phoenix reduces the arbuscular mycorrhizas of other plants. Funct Ecol 22:912–918CrossRefGoogle Scholar
  4. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549CrossRefGoogle Scholar
  5. Bower CA, Wilcox LV (1965) Soluble salts. In: Black CA (ed) Methods of soil analysis, agronomy. American Society of Agronomy, Wisconsin, pp 933–951Google Scholar
  6. Brainard LD, Koch AM, Gordon AM, Klironomos JN (2013) Growth response of crops to soil microbial communities from conventional monocropping and tree-based intercropping systems. Plant Soil 363:345–356CrossRefGoogle Scholar
  7. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of phosphorus in soils. Soil Sci 59:39–46CrossRefGoogle Scholar
  8. Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2-chemical and microbiological properties, 2nd edn. American Society of Agronomy, Madison, pp 595–624Google Scholar
  9. Chu-Chou M, Guo B, An ZQ, Hendrix JW, Ferriss RS, Siegel MR, Dougherty CT, Burrus PB (1992) Suppression of mycorrhizal fungi in fescue by the Acremonium coenophialum endophyte. Soil Biol Biochem 24:633–637CrossRefGoogle Scholar
  10. Del Fabbro C, Prati D (2015) Invasive plant species do not create more negative soil conditions for other plants than natives. Perspect Plant Ecol Evol Syst 17:87–95CrossRefGoogle Scholar
  11. Dieng A, Duponnois R, Ndoye I, Baudoin E (2015) Cultivation of Jatropha curcas L. leads to pronounced mycorrhizal community differences. Soil Biol Biochem 89:1–11CrossRefGoogle Scholar
  12. Elad Y, Chet I, Henis Y (1981) A selective medium for improving quantitative isolation of Trichoderma spp. from soil. Phytoparasitica 9:59–67CrossRefGoogle Scholar
  13. Eppinga MB, Rietkerk M, Dekker SC, De Ruiter PC (2006) Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos 114:168–176CrossRefGoogle Scholar
  14. Goloboff P (1997) NONA, version 2.0 for Windows. Available from http://www.cladistics.com. Accessed 10 Feb 2018
  15. Islam AA, Yaakob Z, Ghani JA, Anuar N (2014) Jatropha curcas L.: a future energy crop with enormous potential. In: Hakeem K, Jawaid M, Rashid U (eds) Biomass and bioenergy. Springer, Cham, pp 31–61Google Scholar
  16. Jaiswal M, Pandey AK (2013) Studies on endophytic fungi associated with Jatropha curcas. J Trop For 29:68–71Google Scholar
  17. Jongschaap REE, Corré WJ, Bindraban PS, Brandenburg WA (2007) Claims and facts on Jatropha curcas L. Global Jatropha curcas evaluation, breeding and propagation programme. Plant Research International BV Wageningen, The Netherlands report 158, 66pGoogle Scholar
  18. Kopáček J, Cosby BJ, Evans CD, Hruška J, Moldan F, Oulehle F, Šantrůčková H, Tahovská K, Wright RF (2013) Nitrogen, organic carbon and sulphur cycling in terrestrial ecosystems: linking nitrogen saturation to carbon limitation of soil microbial processes. Biogeochemistry 115:33–51CrossRefGoogle Scholar
  19. Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS One 8:e56202CrossRefGoogle Scholar
  20. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell publishing, Iowa 388 pCrossRefGoogle Scholar
  21. Marín C, Aguilera P, Oehl F, Godoy R (2017) Factors affecting arbuscular mycorrhizal fungi of Chilean temperate rainforests. J Soil Sci Plant Nutr 17(4):966–984CrossRefGoogle Scholar
  22. Martínez OA, Encina C, Tomckowiack C, Droppelmann F, Jara R, Maldonado C, Muñoz O, García-Fraile P, Rivas R (2018) Serratia strains isolated from the rhizosphere of raulí (Nothofagus alpina) in volcanic soils harbour PGPR mechanisms and promote raulí plantlet growth. J Soil Sci Plant Nutr 18(3):804–819Google Scholar
  23. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  24. Miao CP, Mi QL, Qiao XG, Zheng YK, Chen YW, Xu LH, Guan HL, Zhao LX (2015) Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens. J Ginseng Res 40:127–134CrossRefGoogle Scholar
  25. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270CrossRefGoogle Scholar
  26. Novas MV, Cabral D, Godeas AM (2005) Interaction between grass endophytes and mycorrhizas in Bromus setifolius from Patagonia, Argentina. Symbiosis 40:23–30Google Scholar
  27. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  28. Pitt JI, Hocking AD (2009) Fungi and food spoilage, third edn. Springer, New York 519pCrossRefGoogle Scholar
  29. R Development Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/
  30. Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330CrossRefGoogle Scholar
  31. Stanton ML (2003) Interacting guilds: moving beyond the pairwise perspective on mutualisms. Am Nat 162:S10–S23CrossRefGoogle Scholar
  32. Vaz ABM, Fontenla S, Rocha FS, Brandão LR, Vieira ML, De García V, Goes-Neto A, Rosa CA (2014) Fungal endophyte β-diversity associated with Myrtaceae species in an Andean Patagonian forest (Argentina) and an Atlantic forest (Brazil). Fungal Ecol 8:28–36CrossRefGoogle Scholar
  33. Vignale MV, Iannone LJ, Scervino JM, Novas MV (2017) Epichloë exudates promote in vitro and in vivo arbuscular mycorrhizal fungi development and plant growth. Plant Soil 422:267–281CrossRefGoogle Scholar
  34. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  35. Wilson D (1995) Endophyte—the evolution of a term, and clarification of its use and definition. Oikos 73:274–276CrossRefGoogle Scholar
  36. Yuan ZL, Rao LB, Chen YC, Zhang CL, Wu YG (2011) From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol 115:197–213CrossRefGoogle Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2019

Authors and Affiliations

  1. 1.Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental (DBBE)Ciudad Autónoma de Buenos AiresArgentina
  2. 2.CONICET, Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO)Ciudad Autónoma de Buenos AiresArgentina

Personalised recommendations