Advertisement

Arbuscular Mycorrhizal Colonization Promotes the Tolerance to Salt Stress in Lettuce Plants through an Efficient Modification of Ionic Balance

  • Christian Santander
  • Mario Sanhueza
  • Jorge Olave
  • Fernando Borie
  • Alexander Valentine
  • Pablo CornejoEmail author
Research Article

Abstract

Soil salinity is the biggest problem which hinders the productivity of agricultural crops, causing adverse effects on plant growth and development. In this regard, it has been shown that the arbuscular mycorrhizal fungi (AMF) can establish a symbiosis with most agricultural plants improving water and nutrient absorption under salinity stress conditions. The functional contribution of AMF strains (Claroideoglomus claroideum (Cc) and a native consortium of AMF (HM) isolated from saline soils) on the growth and nutrition of lettuce plants (Lactuca sativa var. longifolia) was evaluated under increasing salt stress conditions (0, 40, and 80 mM NaCl). At 60 days of growth, biomass production, nutrient content (N, P), ions (Ca2+, Mg2+, Na+, K+), chlorophyll, proline content, and AMF propagules were evaluated. The highest growth was observed in plants inoculated with Cc, which produced a higher percentage of root colonization and hyphal length at all levels of salinity, compared to plants inoculated with HM or non-inoculated plants. These results were directly related to higher biomass production, increased synthesis of proline, increased N uptake, and noticeable changes in ionic relations, based in a diminishing Na+, compared to non-mycorrhizal plants. Our results suggest that this improved ionic balance is due to a filtering effect of AMF structures both in the soil and in the root that prevents the entry of toxic Na+ ions, which is important due to the level of lettuce production on saline soils improving the crop by means of directed inoculation with efficient AMF strains.

Keywords

AMF strains Fungal propagules Ionic balance Osmotic stress Salinity 

Notes

Funding information

The authors thank CONICYT, Chile, for the financial support through a scholarship for Doctoral Thesis, Grant No. 21161211 (C. Santander); FONDECYT Regular Grant No. 1170264 (P. Cornejo); PAI-MEC program, Grant No. 80170023 (A. Valentine); and CONICYT/FONDAP/15130015 (P. Cornejo).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Abdel Latef AAH, He C (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127(3):228–233.  https://doi.org/10.1016/j.scienta.2010.09.020 CrossRefGoogle Scholar
  2. Aliasgharzadeh N, Saleh Rastin N, Towfighi H, Alizadeh A (2001) Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11(3):119–122.  https://doi.org/10.1007/s005720100113 CrossRefGoogle Scholar
  3. Aroca R, Ruiz-Lozano JM, Zamarreño á M, Paz JA, García-Mina JM, Pozo MJ, López-Ráez JA (2013) Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J Plant Physiol 170(1):47–55.  https://doi.org/10.1016/j.jplph.2012.08.020 CrossRefGoogle Scholar
  4. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216.  https://doi.org/10.1016/J.ENVEXPBOT.2005.12.006 CrossRefGoogle Scholar
  5. Azcón R, Barea JM (2010) Mycorrhizosphere interactions for legume improvement. In: Khan MS, Musarrat J, Zaidi A (eds) Microbes for Legume Improvement. Springer Vienna, Vienna, p 237–271.  https://doi.org/10.1007/978-3-211-99753-6_10
  6. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207.  https://doi.org/10.1007/BF00018060 CrossRefGoogle Scholar
  7. Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in plants. J Plant Physiol 171(9):723–731.  https://doi.org/10.1016/j.jplph.2013.10.014 CrossRefGoogle Scholar
  8. Borie FR, Rubio R, Morales A, Castillo C (2000) Relationships between arbuscular mycorrhizal hyphal density and glomalin production with physical and chemical characteristics of soils under no-tillage. Rev Chil Hist Nat 73:749–756CrossRefGoogle Scholar
  9. Campagnac E, Khasa DP (2014) Relationship between genetic variability in Rhizophagus irregularis and tolerance to saline conditions. Mycorrhiza 24(2):121–129.  https://doi.org/10.1007/s00572-013-0517-8 CrossRefGoogle Scholar
  10. Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T (2014) A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24(8):611–625.  https://doi.org/10.1007/s00572-014-0582-7 CrossRefGoogle Scholar
  11. Copeman RH, Martin CA, Stutz JC (1996) Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils. HortScience 31(3):341–344CrossRefGoogle Scholar
  12. Cornejo P, Meier S, Garcia S, Ferrol N, Duran P, Borie F, Seguel A (2017) Contribution of inoculation with arbuscular mycorrhizal fungi to the bioremediation of a copper contaminated soil using Oenothera picensis. J Soil Sci Plant Nutr 17:14–21Google Scholar
  13. Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24(1):170–179.  https://doi.org/10.1016/j.sjbs.2016.02.010 CrossRefGoogle Scholar
  14. Estrada B, Beltrán-Hermoso M, Palenzuela J, Iwase K, Ruiz-Lozano JM, Barea JM, Oehl F (2013) Diversity of arbuscular mycorrhizal fungi in the rhizosphere of Asteriscus maritimus (L.) Less., a representative plant species in arid and saline Mediterranean ecosystems. J Arid Environ 97:170–175.  https://doi.org/10.1016/j.jaridenv.2013.05.019 CrossRefGoogle Scholar
  15. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104(7):1263–1280.  https://doi.org/10.1093/aob/mcp251 CrossRefGoogle Scholar
  16. Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22(3):203–217.  https://doi.org/10.1007/s00572-011-0392-0 CrossRefGoogle Scholar
  17. Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23(1):71–86.  https://doi.org/10.1007/s00572-012-0449-8 CrossRefGoogle Scholar
  18. Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status , K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78(3):371–387.  https://doi.org/10.1007/s10725-015-0099-x CrossRefGoogle Scholar
  19. Garg N, Manchanda G (2008) Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (Pigeonpea). J Plant Growth Regul 27(2):115–124.  https://doi.org/10.1007/s00344-007-9038-z CrossRefGoogle Scholar
  20. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84(3):489–500.  https://doi.org/10.1111/j.1469-8137.1980.tb04556.x CrossRefGoogle Scholar
  21. Hammer EC, Rillig MC (2011) The influence of different stresses on glomalin levels in an arbuscular mycorrhizal fungus-salinity increases glomalin content. PLoS One 6(12):1–5.  https://doi.org/10.1371/journal.pone.0028426 CrossRefGoogle Scholar
  22. Hammer EC, Nasr H, Pallon J, Olsson PA, Wallander H (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21(2):117–129.  https://doi.org/10.1007/s00572-010-0316-4 CrossRefGoogle Scholar
  23. Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16(5):371–379.  https://doi.org/10.1007/s00572-006-0046-9 CrossRefGoogle Scholar
  24. Krishnamoorthy R, Kim K, Subramanian P, Senthilkumar M, Anandham R, Sa T (2016) Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected soil enhances the tolerance of maize to salinity in coastal reclamation soil. Agric Ecosyst Environ 231:233–239.  https://doi.org/10.1016/j.agee.2016.05.037 CrossRefGoogle Scholar
  25. Meier S, Cornejo P, Cartes P, Borie F, Medina J, Azcón R (2015) Interactive effect between cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. J Plant Nutr Soil Sci 178(1):126–135.  https://doi.org/10.1002/jpln.201400092 CrossRefGoogle Scholar
  26. Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96.  https://doi.org/10.1016/j.jplph.2014.08.019 CrossRefGoogle Scholar
  27. Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83.  https://doi.org/10.1016/j.jplph.2015.07.006 CrossRefGoogle Scholar
  28. Richards LA (1954) Diagnosis and improvement of diagnosis and improvement of saline and alkali soils. Agricultural Handbook n° 60. US Department of Agriculture Washington D.C., 160 pGoogle Scholar
  29. Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044.  https://doi.org/10.1093/jxb/ers126 CrossRefGoogle Scholar
  30. Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P (2017) Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27:1–19.  https://doi.org/10.1007/s00572-017-0784-x CrossRefGoogle Scholar
  31. Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296.  https://doi.org/10.1007/s00572-008-0180-7 CrossRefGoogle Scholar
  32. Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. J Agron 8:79–83.  https://doi.org/10.3923/ja.2009.79.83 CrossRefGoogle Scholar
  33. Torbaghan ME, Lakzian A, Astaraei AR, Fotovat A, Besharati H (2017) Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. J Soil Sci Plant Nutr 17:1058–1087CrossRefGoogle Scholar
  34. Tsunekawa K, Shijuku T, Hayashimoto M, Kojima Y, Onai K, Morishita M, Uozumi N (2009) Identification and characterization of the Na+/H+ antiporter NhaS3 from the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 284(24):16513–16521.  https://doi.org/10.1074/jbc.M109.001875
  35. Tuo X-Q, Li S, Wu Q-S, Zou Y-N (2015) Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: changes in chlorophyll and proline metabolism. Sci Hortic 197:130–134.  https://doi.org/10.1016/j.scienta.2015.09.022 CrossRefGoogle Scholar
  36. Yamato M, Ikeda S, Iwase K (2008) Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions. Mycorrhiza 18(5):241–249.  https://doi.org/10.1007/s00572-008-0177-2 CrossRefGoogle Scholar
  37. Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Cha-um S (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hortic 198:107–117.  https://doi.org/10.1016/j.scienta.2015.11.002 CrossRefGoogle Scholar
  38. Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88(August 2016):41–49.  https://doi.org/10.1016/j.apsoil.2014.11.016 CrossRefGoogle Scholar
  39. Zheng Y, Jia A, Ning T, Xu J, Li Z, Jiang G (2008) Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J Plant Physiol 165(14):1455–1465.  https://doi.org/10.1016/j.jplph.2008.01.001 CrossRefGoogle Scholar
  40. Zhu XC, Song FB, Liu SQ, Liu TD, Zhou X (2012) Arbuscular mycorrhizae improves photosynthesis and water status of Zea mays L. under drought stress. Plant Soil Environ 58(4):196–203CrossRefGoogle Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias Químicas y Recursos Naturales, Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental (CIMYSA), Programa de Doctorado en Ciencias de Recursos NaturalesUniversidad de La FronteraTemucoChile
  2. 2.Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH)Universidad Arturo PratIquiqueChile
  3. 3.Facultad de Farmacia, Programa de Doctorado en Ciencia y Tecnología AnalíticaUniversidad de ConcepciónConcepciónChile
  4. 4.Facultad de Ciencias de Recursos NaturalesUniversidad Católica de TemucoTemucoChile
  5. 5.Department of Botany and ZoologyStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations