Advertisement

Nodulation and Genomic Capacity of a Novel High-Latitude Bradyrhizobium japonicum HLNEAU001

  • Yan Shi
  • Jianyi Li
  • Jinhui Wang
  • Rongsheng Zhu
  • Shuping Li
  • Qingying Li
  • Lin Chen
  • Jingyi Zhu
  • Jianan Zou
  • Jieqi Wang
  • Huilin Chang
  • Chao Ma
  • Xueying Liu
  • Hongwei Jiang
  • Zhengong Yin
  • Zhenbang Hu
  • Xiaoxia Wu
  • Zhaoming QiEmail author
  • Chunyan LiuEmail author
  • Dawei XinEmail author
  • Qingshan ChenEmail author
Research Article

Abstract

Rhizobium species are essential symbionts of legumes, participating in nitrogen fixation and having an important impact on the protein content of soybeans. In this study, we isolated Rhizobia from the soybean cultivar Suinong14 growing in a soybean field in Harbin (45.75° N, 126.53° E), which is situated within one of the three largest black soil belts in the world. One Bradyrhizobium japonicum strain (High-Latitude Northeast Agricultural University 001, HLNEAU001) was identified. Two hundred fifteen core soybean germplasms from Northeast China were screened for nodule traits, with the nodule number ranging from 0 to 95. Phylogenetic analysis showed that B. japonicum HLNEAU001 is closely related to B. japonicum USDA6 and B. diazoefficiens USDA110. A nodulation capacity analysis showed that B. japonicum HLNEAU001 formed more nodules than B. japonicum USDA6 or B. diazoefficiens USDA110, with 30 soybean germplasms being assayed for each strain. Using a draft genome sequence of B. japonicum HLNEAU001 to compare the genomic differences between B. japonicum HLNEAU001, B. japonicum USDA6 and B. diazoefficiens USDA110 showed that the three strains contain 5790 core genes. Because B. japonicum HLNEAU001 and B. japonicum USDA6 exhibited collinearity, the genomic differences between these two strains were further analysed. In addition to type IV and type VI secreted proteins, we hypothesize that type III effectors are the key factors underlying the nodulation capacity differences between B. japonicum HLNEAU001 and B. japonicum USDA6. The results of this study indicate that B. japonicum HLNEAU001 is a distinctive cold-region, slow-growing Rhizobium strain that is capable of effective symbiotic nitrogen fixation in cold regions and black soil and may play a pivotal role in sustainable agricultural production.

Keywords

Black soil belts Bradyrhizobium japonicum Genome Nodulation Germplasm Plant soil 

Notes

Funding Information

The promote project for young talents of the colleges in Heilongjiang province (UNPYSCT-2016008). Financial support was received from The Ministry of Science and Technology of People’s Republic of China Project (2017YFE0111000); EUCLEG (727312); National Natural Science Foundation of China (31400074, 31271747, 31471516, 31401465, 31501332); National Key R&D Program of China (2016YFD0100500, 2016YFD0100300, 2016YFD0100201); Natural Science Foundation of Heilongjiang Province of China (Grant number ZD201213); Heilongjiang Postdoctoral Science Foundation (LBH-Q16014); Harbin Science Technology Project (2013RFQXJ005; 2014RFXXJ012) and Academic Backbon’ Project of Northeast Agricultural University (15XG02).

Supplementary material

42729_2019_27_MOESM1_ESM.docx (497 kb)
ESM 1 (DOCX 497 kb)

References

  1. Bladergroen MR, Badelt K, Spaink HP (2003) Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact 16:53–64CrossRefGoogle Scholar
  2. Büttner D, Bonas U (2003) Common infection strategies of plant and animal pathogenic bacteria. Curr Opin Plant Biol 6:312–319CrossRefGoogle Scholar
  3. Cao MM, Qiao LI, Zhang LY, Gao J, Wei-Hai LI, Ding WM, Sun YK (2014) Accumulated temperature variation and accumulated temperature rezone in Heilongjiang Province. Chin J AgrometeorolGoogle Scholar
  4. Dai WJ, Zeng Y, Xie ZP, Staehelin C (2008) Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234. J Bacteriol 190:5101–5110CrossRefGoogle Scholar
  5. Dâmiany PO, Marislaine AF, Bruno LS, Otávio HST, Fábio ADM, Márcia R et al (2017) Acid tolerant Rhizobium strains contribute to increasing the yield and profitability of common bean in tropical soils. J Soil Sci Plant Nutr 17:922–934Google Scholar
  6. Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320CrossRefGoogle Scholar
  7. Fauvart M, Michiels J (2008) Rhizobial secreted proteins as determinants of host specificity in the rhizobium-legume symbiosis. FEMS Microbiol Lett 285:1–9CrossRefGoogle Scholar
  8. Ferguson BJ, Mathesius U (2014) Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol 40:770CrossRefGoogle Scholar
  9. Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium-legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–194CrossRefGoogle Scholar
  10. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877CrossRefGoogle Scholar
  11. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18CrossRefGoogle Scholar
  12. Hongkun Z, Yumin W, Fu X, Xiaodong L, Cuiping Y, Guangxun Q et al (2018) The genetic diversity and geographic differentiation of the wild soybean in Northeast China based on nuclear microsatellite variation. Int J Genomics 2018:1–9Google Scholar
  13. Hubber A, Vergunst A, Sullivan J, Hooykaas PJ, Ronson C (2004) Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol Microbiol 54:561–574CrossRefGoogle Scholar
  14. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379Google Scholar
  15. Jabbouri S, Fellay R, Talmont F, Kamalaprija P, Burger U, Relić B, Promé JC, Broughton WJ (1995) Involvement of nodS in N-methylation and nodU in 6-O-carbamoylation of Rhizobium sp. NGR234 Nod factors. J Biol Chem 270:22968–22973CrossRefGoogle Scholar
  16. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110 (supplement). DNA Res 9:225–256CrossRefGoogle Scholar
  17. Kaneko T, Maita H, Hirakawa H, Uchiike N, Minamisawa K, Watanabe A, Sato S (2011) Complete genome sequence of the soybean symbiont Bradyrhizobium japonicum strain USDA6T. Genes 2:763–787CrossRefGoogle Scholar
  18. Keyser HH, Griffin RF (1987) Beltsville hizobium culture collection catalog. ArsGoogle Scholar
  19. Kneen BE, Larue TA (1983) Congo red absorption by Rhizobium leguminosarum. Appl Environ Microbiol 45:340–342Google Scholar
  20. López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM (2016) Bacterial molecular signals in the Sinorhizobium fredii-soybean symbiosis. Int J Mol Sci 17:755CrossRefGoogle Scholar
  21. Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252CrossRefGoogle Scholar
  22. Pádua Oliveira D, Alves de Figueiredo M, Lima Soares B, Stivanin Teixeira OH, Dias Martins FA, Rufini M, Peixoto Chain C, Pereira Reis R, Ramalho de Morais A, de Souza Moreira FM, Bastos de Andrade MJ (2017) Acid tolerant rhizobium strains contribute to increasing the yield and profitability of common bean in tropical soils. JSSPN 17(4):922–934Google Scholar
  23. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:17–42CrossRefGoogle Scholar
  24. Reavy B, Bagirova S, Chichkova NV, Fedoseeva SV, Sang HK, Vartapetian AB, Taliansky ME (2007) Caspase-resistant VirD2 protein provides enhanced gene delivery and expression in plants. Plant Cell Rep 26:1215–1219CrossRefGoogle Scholar
  25. Rellán-Álvarez R, Andaluz S, Rodríguez-Celma J, Wohlgemuth G, Zocchi G, Álvarez-Fernández A, Fiehn O, López-Millán AF, Abadía J (2010) Changes in the proteomic and metabolic profiles of Beta vulgaris root tips in response to iron deficiency and resupply. BMC Plant Biol 10:120CrossRefGoogle Scholar
  26. Ritsema T, Wijfjes AHM, Lugtenberg BJJ, Spaink HP (1996) Rhizobium nodulation protein Noda is a host-specific determinant of the transfer of fatty acids in Nod factor biosynthesis. Mol Gen Genet MGG 251(1):44–51Google Scholar
  27. Saghafi D, Ghorbanpour M, Lajayer AB (2018) Efficiency of Rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress. J Soil Sci Plant Nutr 18(1):253–268Google Scholar
  28. Schmeisser C, Liesegang H, Krysciak D, Bakkou N, Le Quere A, Wollherr A et al (2009) Rhizobium sp. strain ngr234 possesses a remarkable number of secretion systems. Appl Environ Microbiol 75(12):4035–4045CrossRefGoogle Scholar
  29. Suzaki T, Kawaguchi M (2014) Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection. Curr Opin Plant Biol 21:16CrossRefGoogle Scholar
  30. Viprey V, Del GA, Golinowski W, Broughton WJ, Perret X (2010) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol Microbiol 28:1381–1389CrossRefGoogle Scholar
  31. Wang JY, Wang R, Zhang YM, Liu HC, Chen WF, Wang ET, Sui XH, Chen WX (2013) Bradyrhizobium daqingense sp. nov. isolated from soybean nodules. Int J Syst Evol Microbiol 63(Pt 2):616–624CrossRefGoogle Scholar
  32. Weisburg WG (1991) 16s ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703CrossRefGoogle Scholar
  33. Wen D, Liang W (2001) Soil fertility quality and agricultural sustainable development in the black soil region of Northeast China. Environ Dev Sustain 3(1):31–43CrossRefGoogle Scholar
  34. Yang FJ, Cheng LL, Zhang L, Dai WJ, Liu Z, Yao N, Xie ZP, Staehelin C (2009) Y4lO of Rhizobium sp. strain NGR234 is a symbiotic determinant required for symbiosome differentiation. J Bacteriol 191:735–746CrossRefGoogle Scholar
  35. Zhao L, Li MM, Xu CJ, Yang X, Li DM, Zhao X et al (2018) Natural variation in GmGBP1 promoter affects photoperiod control of flowering time and maturity in soybean. Plant J 96:967–977Google Scholar
  36. Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–131Google Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2019

Authors and Affiliations

  • Yan Shi
    • 1
  • Jianyi Li
    • 1
  • Jinhui Wang
    • 1
  • Rongsheng Zhu
    • 1
  • Shuping Li
    • 1
  • Qingying Li
    • 1
  • Lin Chen
    • 1
  • Jingyi Zhu
    • 1
  • Jianan Zou
    • 1
  • Jieqi Wang
    • 1
  • Huilin Chang
    • 1
    • 2
  • Chao Ma
    • 1
  • Xueying Liu
    • 1
  • Hongwei Jiang
    • 1
  • Zhengong Yin
    • 1
    • 2
  • Zhenbang Hu
    • 1
  • Xiaoxia Wu
    • 1
  • Zhaoming Qi
    • 1
    Email author
  • Chunyan Liu
    • 1
    Email author
  • Dawei Xin
    • 1
    Email author
  • Qingshan Chen
    • 1
    Email author
  1. 1.College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of EducationNortheast Agricultural University, College of ScienceHarbinPeople’s Republic of China
  2. 2.Crop Breeding Institute, Suihua branch of Heilongjiang Academy of Agricultural SciencesHeilongjiang Academy of Agricultural SciencesHarbinChina

Personalised recommendations