Advertisement

Lindane Bioremediation in Soils of Different Textural Classes by an Actinobacteria Consortium

  • Enzo E. Raimondo
  • Juan D. Aparicio
  • Gabriela E. Briceño
  • María S. Fuentes
  • Claudia S. BenimeliEmail author
Research Article
  • 1 Downloads

Abstract

Lindane is a highly chlorinated and recalcitrant insecticide, capable to accumulate in soil and groundwater. Despite lindane has been banned in many countries, numerous sites still remain contaminated. The present work studies the bioremediation of soils of different textures contaminated with lindane by bioaugmentation with a quadruple Streptomyces consortium. In the three evaluated soils, silty loam soil (SLS), sandy soil (SS), and clayey soil (CS), heterotrophic microbial populations increased during the 14 days of the assay and CFU counts were higher in bioaugmented than in non-bioaugmented soils. Lindane removal was detected in all contaminated treatments, with higher removal percentages in the bioaugmented microcosms (SS 70.3%, SLS 36.3%, and CS 30.7%), than in non-bioaugmented ones (SS 40.4%, SLS 9.3%, and CS 12.2%). The pesticide half-life decreased by 77.3, 50.3, and 10.7 days, in bioaugmented SLS, CS, and SS, respectively. Lindane had an inhibitory effect on soil enzyme activities such as dehydrogenase, fluorescein diacetate hydrolysis, acid and alkaline phosphatases and increased the catalase activity, in non-bioaugmented controls; however, no effect on urease activity was observed. Bioaugmentation of soil microcosms with actinobacteria increased all enzymatic activities. Finally, the survival of the four strains of the consortium was demonstrated at the end of the bioremediation assay. Bioremediation using the Streptomyces sp. A2-A5-A11-M7 consortium represents a promising tool to restore different types of soils contaminated with organochlorine pesticides.

Keywords

Pesticide Streptomyces consortium Bioaugmentation Soils Enzymes 

Notes

Acknowledgements

The authors would like to thank Mr. Guillermo Borchia, Mrs. Liliana Colombres, and the student Leandro Coronel for their technical assistance.

Funding Information

This study was financially supported by Secretaria de Ciencia, Arte e Innovación Tecnológica, Universidad Nacional de Tucumán (PIUNT D504); Agencia Nacional de Promoción Científica y Tecnológica (PICT 2013 No. 0141; PICT 2014 No. 2893); and Consejo Nacional de Investigaciones Científicas y Técnicas.

References

  1. Abdul Salam J, Hatha MA, Das N (2017) Microbial-enhanced lindane removal by sugarcane (Saccharum officinarum) in doped soil-applications in phytoremediation and bioaugmentation. J Environ Manag 193:394–399CrossRefGoogle Scholar
  2. Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33(7):943–951Google Scholar
  3. Alvarez A, Saez JM, Dávila-Costa JS, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Polti MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62CrossRefGoogle Scholar
  4. Aparicio J, Simón-Solá MZ, Benimeli CS, Amoroso MJ, Polti MA (2015) Versatility of Streptomyces sp. M7 to bioremediate soils co-contaminated with Cr (VI) and lindane. Ecotoxicol Environ Saf 116:34–39CrossRefGoogle Scholar
  5. Aparicio JD, Raimondo EE, Gil RA, Benimeli CS, Polti MA (2018a) Actinobacteria consortium as an efficient biotechnological tool for mixed polluted soil reclamation: experimental factorial design for bioremediation process optimization. J Hazard Mater 342:408–417CrossRefGoogle Scholar
  6. Aparicio JD, Saez JM, Raimondo EE, Benimeli CS, Polti MA (2018b) Comparative study of single and mixed cultures of actinobacteria for the bioremediation of co-contaminated matrices. J Environ Chem Eng 6(2):2310–2318CrossRefGoogle Scholar
  7. Baćmaga M, Wyszkowska J, Kucharski J (2017) Bioaugmentation of soil contaminated with azoxystrobin. Water Air Soil Pollut 228(1):19Google Scholar
  8. Ballesteros ML, Miglioranza KSB, Gonzalez M, Fillmann G, Wunderlin DA, Bistoni MA (2014) Multimatrix measurement of persistent organic pollutants in Mar Chiquita, a continental saline shallow lake. Sci Total Environ 490:73–80CrossRefGoogle Scholar
  9. Benimeli CS, González AJ, Chaile AP, Amoroso MJ (2007) Temperature and pH effect on lindane removal by Streptomyces sp. M7 in soil extract. J Basic Microbiol 47(6):468–473CrossRefGoogle Scholar
  10. Briceño G, Schalchli H, Rubilar O, Tortella GR, Mutis A, Benimeli CS, Palma G, Diez MC (2016) Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture. Chemosphere 156:195–203CrossRefGoogle Scholar
  11. Chaile AP, Romero N, Amoroso MJ, Hidalgo MDV, Apella MC (1999) Organochlorine pesticides in Sali River. Tucumán-Argentina. Rev Bol Ecol 6:203–209Google Scholar
  12. Cuevas-Díaz MDC, Martínez-Toledo A, Guzmán-López O, Torres-López CP, Ortega-Martínez ADC, Hermida-Mendoza LJ (2017) Catalase and phosphatase activities during hydrocarbon removal from oil-contaminated soil amended with agro-industrial by-products and macronutrients. Water Air Soil Pollut 228(4):159–170CrossRefGoogle Scholar
  13. Cycoń M, Żmijowska A, Wójcik M, Piotrowska-Seget Z (2013) Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J Environ Manag 117:7–16CrossRefGoogle Scholar
  14. Dadhwal M, Singh A, Prakash O, Gupta SK, Kumari K, Sharma P, Jit S, Verma M, Holliger C, Lal R (2009) Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. J Appl Microbiol 106(2):381–392CrossRefGoogle Scholar
  15. Fuentes MS, Saez JM, Benimeli CS, Amoroso MJ (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Pollut 222:217–231Google Scholar
  16. Fuentes MS, Colin VL, Amoroso MJ, Benimeli CS (2016) Selection of an actinobacteria mixed culture for chlordane remediation: pesticide effects on microbial morphology and bioemulsifier production. J Basic Microbiol 56:127–137CrossRefGoogle Scholar
  17. Fuentes MS, Raimondo EE, Amoroso MJ, Benimeli CS (2017) Removal of a mixture of pesticides by a Streptomyces consortium: influence of different soil systems. Chemosphere 173:359–367CrossRefGoogle Scholar
  18. Henríquez C, Uribe L, Valenciano V, Nogales R (2014) Actividad enzimática del suelo -Deshidrogenasa, β-Glucosidasa, Fosfatasa y Ureasa- bajo diferentes cultivos. Agron Costarric 38(1):43–54Google Scholar
  19. Jastrzębska E (2011) The effect of chlorpyrifos and teflubenzuron on the enzymatic activity of soil. Pol J Environ Stud 20(4):903–910Google Scholar
  20. Kogbara RB, Ayotamuno JM, Worlu DC, Fubara-Manuel I (2015) A case study of petroleum degradation in different soil textural classes. Recent Pat Biotechnol 9(2):108–115CrossRefGoogle Scholar
  21. Lew S, Lew M, Szarek J, Babińska I (2011) Seasonal patterns of the bacterioplankton community composition in a lake threatened by a pesticide disposal site. Environ Sci Pollut Res 18(3):376–385CrossRefGoogle Scholar
  22. Liang B, Yang C, Gong M, Zhao Y, Zhang J, Zhu C, Jiang J, Li S (2011) Adsorption and degradation of triazophos, chlorpyrifos and their main hydrolytic metabolites in paddy soil from Chaohu Lake, China. J Environ Manag 92:2229–2234CrossRefGoogle Scholar
  23. Lupi L, Bedmar F, Wunderlin DA, Miglioranza KSB (2016) Organochlorine pesticides in agricultural soils and associated biota. Environ Earth Sci 75:519CrossRefGoogle Scholar
  24. Mendes KF, Barbosa Martins BA, dos Reis MR, Pimpinato RF, Tornisielo VL (2017) Quantification of the fate of mesotrione applied alone or in a herbicide mixture in two Brazilian arable soils. Environ Sci Pollut Res 24(9):8425–8435CrossRefGoogle Scholar
  25. Muñiz S, Gonzalvo P, Valdehita A, Molina-Molina JM, Navas JM, Olea N, Fernández-Cascán J, Navarro E (2017) Ecotoxicological assessment of soils polluted with chemical waste from lindane production: use of bacterial communities and earthworms as bioremediation tools. Ecotoxicol Environ Saf 145:539–548CrossRefGoogle Scholar
  26. PPDB (2017) Pesticides properties database [WWW Document]. URL https://sitem.herts.ac.uk/aeru/footprint/es/Reports/370.htm (Accessed 10.20.17)
  27. Rama Krishna K, Philip L (2011) Bioremediation of single and mixture of pesticide-contaminated soils by mixed pesticide-enriched cultures. Appl Biochem Biotechnol 164:1257–1277CrossRefGoogle Scholar
  28. Rao MA, Scelza R, Acevedo F, Diez MC, Gianfreda L (2014) Enzymes as useful tools for environmental purposes. Chemosphere 107:145–162CrossRefGoogle Scholar
  29. Saez JM, Aparicio JD, Amoroso MJ, Benimeli CS (2015) Effect of the acclimation of a Streptomyces consortium on lindane biodegradation by free and immobilized cells. Process Biochem 50(11):1923–1933CrossRefGoogle Scholar
  30. Saez JM, Bigliardo AL, Raimondo EE, Briceño GE, Polti MA, Benimeli CS (2018) Lindane removal in a biomixture: effect of soil properties and bioaugmentation. Ecotoxicol Environ Saf 156:97–105CrossRefGoogle Scholar
  31. Sagarkar S, Nousiainen A, Shaligram S, Björklöf K, Lindström K, Jørgensen KS, Kapley A (2014) Soil mesocosm studies on atrazine bioremediation. J Environ Manag 139:208–216CrossRefGoogle Scholar
  32. Tejada M, Gómez I, del Toro M (2011) Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology. Ecotoxicol Environ Saf 74(7):2075–2081CrossRefGoogle Scholar
  33. Trasar-Cepeda C, Leiros C, Gil-Sotres F, Seoane S (1997) Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils 26(2):100–106CrossRefGoogle Scholar
  34. Vijgen J, Abhilash PC, Li YF, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schaeffer A, Weber R (2011) Hexachloroyclohexane (HCH) as new Stockholm convention POPs - a global perspective on the management of lindane and its waste isomers. Environ Sci Pollut Res 18:152–162CrossRefGoogle Scholar
  35. Villaverde J, Rubio-Bellido M, Merchán F, Morillo E (2017) Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. J Environ Manag 188:379–386CrossRefGoogle Scholar
  36. Zhang Q, Chen Z, Li Y, Wang P, Zhu C, Gao G, Xiao K, Sun H, Zheng S, Liang Y, Jiang G (2015) Occurrence of organochlorine pesticides in the environmental matrices from King George Island, west Antarctica. Environ Pollut 206:142–149CrossRefGoogle Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2019

Authors and Affiliations

  • Enzo E. Raimondo
    • 1
  • Juan D. Aparicio
    • 1
    • 2
  • Gabriela E. Briceño
    • 3
    • 4
  • María S. Fuentes
    • 1
  • Claudia S. Benimeli
    • 1
    • 5
    Email author
  1. 1.Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)TucumánArgentina
  2. 2.Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánTucumánArgentina
  3. 3.Departamento de Ingeniería QuímicaUniversidad de La FronteraTemucoChile
  4. 4.Núcleo de Desarrollo Científico TecnológicoUniversidad de La FronteraTemucoChile
  5. 5.Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de CatamarcaCatamarcaArgentina

Personalised recommendations