Advertisement

Screening of Native and Exotic Tree Species in Chile for Element Absorption from Dairy Slurry

  • Jaime G. CuevasEmail author
  • Madelaine Quiroz
Research Article

Abstract

We studied the effect of fertigation with cattle slurry on native and exotic arboreal tree species in Chile. The objectives were to identify the most promising species for buffer strips to mitigate the stream pollution in dairy facilities, to determine where most nutrients accumulate (leaves, stems, or roots), and to test whether the native species are or are not a better biofilter than the exotic ones. We hypothesized that the individuals that were fertilized would have a higher nutrient concentration, nutrient accumulation, and growth than those non-fertilized. N and K concentrations were similar in fertilized trees and in the controls, while the P, Ca, Mg, and Na concentrations were higher in the control than those in the fertilized trees. Most species responded positively to fertilization on a dry matter basis. Luma apiculata, Drimys winteri, and Blepharocalyx cruckshanksii responded to fertilization showing a greater height and diameter growth. Generally, nutrients accumulated in leaves. Overall, the exotic Eucalyptus nitens was the species that accumulated more nutrients given its large growth rate. The native species that more commonly stood out in this study were D. winteri, Nothofagus dombeyi, and L. apiculata. In general, a minor proportion of the applied slurry was absorbed by trees, and we recommend the use of trees in biofilters as a complement to crop and pasture absorption.

Keywords

Andisol Dairy slurry Nutrient sinks Plant nutrition Trees 

Notes

Acknowledgements

We especially thank Prof. Juan E. Schlatter for providing many useful orientations for the development of this paper. We also thank the Santa Rosa Experimental Station staff for their help, especially the administrators Rodrigo Barriga and Carlos Villagra. Logistic support was provided by César Leiva, César Lemus, and Jenny Huertas. Mr. Leonardo Alarcón is acknowledged for taking the soil samples, as well as Mr. Carlo Guggiana who designed an Excel® macro used for statistical tests. Miss Yasmín Bolados helped with some analyses. The Garden Unit of the Universidad Austral de Chile also contributed with grass maintenance. Finally, we would also like to acknowledge the valuable comments made by three anonymous reviewers.

Funding Information

Funding was provided by the Fondecyt grant 1110156.

References

  1. Alfaro M, Salazar F, Iraira S, Teuber N, Villarroel D, Ramírez L (2008) Nitrogen, phosphorus and potassium losses in a grazing system with different stocking rates in a volcanic soil. Chil J Agric Res 68:146–155CrossRefGoogle Scholar
  2. Amigo J, Ramírez C (1998) A bioclimatic classification of Chile: woodland communities in the temperate zone. Plant Ecol 136:9–26CrossRefGoogle Scholar
  3. Bonomelli C, Suárez D (1999) Fertilización del eucalipto. 2. Acumulación de nitrógeno, fósforo y potasio. Cienc Investig Agrar 26:11–19CrossRefGoogle Scholar
  4. Cárcamo JA (2012) Crecimiento y calidad en familias de Eucalyptus nitens en dos condiciones de sitio de Valdivia, Chile. Thesis Ingeniería Forestal. Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile, 66 pGoogle Scholar
  5. Cárdenas LM, Hatch DJ, Scholefield D, Jhurreea D, Clark IM, Hirsch PR, Salazar F, Rao-Ravella S, Alfaro M (2013) Potential mineralization and nitrification in volcanic grassland soils in Chile. Soil Sci Plant Nutr 59:380–391CrossRefGoogle Scholar
  6. Cavanagh A, Gasser MO, Labrecque M (2011) Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 35:4165–4173CrossRefGoogle Scholar
  7. CIREN (Centro de Información de Recursos Naturales) (2003) Descripciones de Suelos, Materiales y Símbolos. Estudio Agrológico X Región, Publicación 123. CIREN, Santiago, ChileGoogle Scholar
  8. Cuevas JG, Huertas J, Leiva C, Paulino L, Dörner J, Arumí JL (2014) Nutrient retention in a microwatershed with low levels of anthropogenic pollution. Bosque 35:75–88CrossRefGoogle Scholar
  9. Cuevas JG, Huertas J, Torres A (2015) Rol de las franjas ribereñas para el control de patógenos y contaminación difusa. In: Salazar F, Alfaro M (eds) Buenas Prácticas Ganaderas para reducir la carga de patógenos en purines. INIA Remehue, Osorno, Chile, pp 57–61Google Scholar
  10. Cuevas JG, Little C, Lobos D, Lara A, Pino M, Acuña A (2018) Nutrient and sediment losses to streams after intervention of Eucalyptus plantations. J Soil Sci Plant Nutr 18:576–596Google Scholar
  11. Donoso P, Navarro C, Soto D, Gerding V, Thiers O, Pinares J, Escobar B, Sanhueza MJ (2015) Manual de plantaciones de raulí (Nothofagus alpina) y coihue (Nothofagus dombeyi) en Chile. Universidad Austral de Chile-Universidad Católica de Temuco, Temuco, Chile 203 pGoogle Scholar
  12. Dörner J, Huertas J, Cuevas JG, Leiva C, Paulino L, Arumí JL (2015) Water content dynamics in a volcanic ash soil slope in southern Chile. J Plant Nut Soil Sci 178:693–702CrossRefGoogle Scholar
  13. González-García M, Hevia A, Majada J, Rubiera F, Barrio-Anta M (2015) Nutritional, carbon and energy evaluation of Eucalyptus nitens short rotation bioenergy plantations in northwestern Spain. Iforest 9:303–310CrossRefGoogle Scholar
  14. Havlin JL, Tisdale SL, Nelson WL, Beaton JD (2014) Soil fertility and fertilizers. An introduction to nutrient management. Pearson Inc, Boston, USA 516 pGoogle Scholar
  15. Hawkins BJ, Xue J, Bown HE, Clinton PW (2010) Relating nutritional and physiological characteristics to growth of Pinus radiata clones planted on a range of sites in New Zealand. Tree Physiol 30:1174–1191CrossRefGoogle Scholar
  16. Heaton RJ, Sims REH, Tungcul RO (2002) The root growth of Salix viminalis and Eucalyptus nitens in response to dairy farm pond effluent irrigation. Bioresour Technol 81:1−6CrossRefGoogle Scholar
  17. Huertas J, Cuevas JG, Paulino L, Salazar F, Arumí JL, Dörner J (2016) Dairy slurry application to grasslands and groundwater quality in a volcanic soil. J Soil Sci Plant Nutr 16:745–762Google Scholar
  18. Hueso-González P, Martínez-Murillo JM, Ruiz-Sinoga JD (2018) Técnicas de restauración de suelos basadas en el uso de residuos orgánicos: seis años de beneficios sobre las propiedades de un suelo forestal. Geogr Res Lett 2:675–695Google Scholar
  19. Huygens D, Boeckx P, Templer P, Paulino L, Van Cleemput O, Oyarzún C, Müller C, Godoy R (2008) Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils. Nat Geosci 1:543–548CrossRefGoogle Scholar
  20. IUSS Working Group WRB (2015) World Reference Base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. In: World Soil Resources Reports No. 106. FAO, Rome, Italy 192 pGoogle Scholar
  21. Jarrell WM, Beverly RB (1981) The dilution effect in plant nutrition studies. Adv Agron. 34:197–224CrossRefGoogle Scholar
  22. Little C, Cuevas JG, Lara A, Pino M, Schoenholtz S (2015) Buffer effects of streamside native forests on water provision in watersheds dominated by exotic forest plantations. Ecohydrology 8:1205–1217CrossRefGoogle Scholar
  23. Lowrance R (1998) Riparian forest ecosystems as filters for nonpoint-source pollution. In: Pace ML, Groffman PM (eds) Successes, limitations, and frontiers in ecosystem science. Springer, New York, USA, pp 113–141CrossRefGoogle Scholar
  24. Lowrance R, Vellidis G, Hubbard RK (1995) Denitrification in a restored riparian forest wetland. J Environ Qual. 24:808–815CrossRefGoogle Scholar
  25. Lusk CH, Contreras O (1999) Foliage area and crown nitrogen turnover in temperate rain forest juvenile trees of differing shade tolerance. J Ecol. 87:973–983CrossRefGoogle Scholar
  26. Maas EV (1993) Salinity and citriculture. Tree Physiol 12:195–216CrossRefGoogle Scholar
  27. Marschner H (2012) Mineral nutrition of higher plants (3rd Ed). Academic Press, Amsterdam, The Netherlads 651 pGoogle Scholar
  28. Martínez-Lagos J, Salazar F, Alfaro M, Rosas M, Macías F (2015) Nitrogen mineralization in a silandic andosol fertilized with dairy slurry and urea. J Soil Sci Plant Nut. 15:60–75Google Scholar
  29. Orroño DI, Lavado RS (2009) Heavy metal accumulation in Pelargonium bortorum: effects on growth and development. Phyton 78:75–82Google Scholar
  30. Pérez C (1995) Los procesos de descomposición de la materia orgánica en bosques templados costeros: interacción entre suelo, clima y vegetación. In: Armesto JJ, Villagrán C, Arroyo MK (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago, Chile, pp 301–315Google Scholar
  31. Pérez CA, Carmona MR, Armesto JJ (2003) Non-symbiotic nitrogen fixation, net nitrogen mineralization and denitrification in evergreen forests of Chiloé island, Chile: a comparison with other temperate forests. Gayana Bot. 60:25–33CrossRefGoogle Scholar
  32. Quinn JM, Wright-Stow AE (2008) Stream size influences stream temperature impacts and recovery rates after clearfell logging. Forest Ecol Manag. 256:2101–2109CrossRefGoogle Scholar
  33. Riedell W (2010) Mineral-nutrient synergism and dilution responses to nitrogen fertilizer in field-grown maize. J Plant Nutr Soil Sci. 173:869–874CrossRefGoogle Scholar
  34. Rose T, Bowden B (2013) Matching soil nutrient supply and crop demand during the growing season. In: Rengel Z (ed) Improving water and nutrient-use efficiency in food production systems. John Wiley & Sons, Inc., Iowa, USA, pp 93–103CrossRefGoogle Scholar
  35. Sadzawka A, Carrasco M, Grez R, Mora M, Flores H, Neaman A (2006) Métodos de análisis recomendados para los suelos de Chile. INIA, Santiago, Chile 164 pGoogle Scholar
  36. Sadzawka A, Carrasco M, Demanet R, Flores H, Grez R, Mora M, Neaman A (2007) Métodos de análisis de tejidos vegetales. INIA, Santiago, Chile 139 pGoogle Scholar
  37. Salazar F, Dumont JC, Chadwick D, Saldaña R, Santana M (2007) Characterization of dairy slurry in southern Chile farms. Agr Tec. 67:155–162Google Scholar
  38. Salazar F, Martínez-Lagos J, Alfaro M, Misselbrook T (2012) Low nitrogen leaching losses following a high rate of dairy slurry and urea application to pasture on a volcanic soil in Southern Chile. Agr Ecosyst Environ. 160:23–28CrossRefGoogle Scholar
  39. Salazar F, Martínez-Lagos J, Alfaro M, Misselbrook T (2014) Ammonia emission from a permanent grassland on volcanic soil after the treatment with dairy slurry and urea. Atmos Environ. 95:591–597CrossRefGoogle Scholar
  40. Saldaña A, Lusk CH (2003) Influence of overstorey species identity on resource availability and variation in composition of advanced regeneration in a temperate rainforest in southern Chile. Rev Chil Hist Nat 76:639–650CrossRefGoogle Scholar
  41. Saunders O, Fortuna AM, Harrison J, Whitefield E, Cogger C, Kennedy AC, Bary A (2012) Comparison of raw dairy manure slurry and anaerobically digested slurry as N Sources for grass forage production. Int J Agron. 101074:1–10CrossRefGoogle Scholar
  42. Schlatter JE (1997) Demanda nutritiva. Síntesis cuantitativa. In: Schlatter JE, Gerding V (eds) Curso Corto de Postítulo sobre Fertilización Forestal. Instituto de Silvicultura, Facultad de Ciencias Forestales, Universidad Austral de Chile, Valdivia, pp 116–124Google Scholar
  43. Sokal R, Rohlf F (1995) Biometry. The principles and practice of statistics in biological research. WH Freeman and Company, New York, USA 859 pGoogle Scholar
  44. Srivastava M, Ma LQ, Gonzaga J (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ. 364:24–31CrossRefGoogle Scholar
  45. Staelens J, De Schrijver A, Oyarzún C, Lust N (2003) Comparison of dry deposition and canopy exchange of base cations in temperate hardwood forests in Flanders and Chile. Gayana Bot. 60:9–16CrossRefGoogle Scholar
  46. Tapia F, Villavicencio A (2007) Uso de Biofiltros para mejorar la calidad del agua de riego. In: Boletín INIA N°170. Instituto de Investigaciones Agropecuarias, Santiago, Chile 128 pGoogle Scholar
  47. Thiers OE, Gerding V, Schlatter JE (2007) Exportación de nitrógeno y calcio mediante raleo en un rodal de Eucalyptus nitens de 5 años de edad. Chile. Bosque 28:256–262Google Scholar
  48. Tosso J (1985) Suelos volcánicos de Chile. Instituto de Investigaciones Agropecuarias, Santiago, Chile 712 pGoogle Scholar
  49. Vallejos RA (2010) Crecimiento y estado de Alnus glutinosa, Eucalyptus nitens y Pinus radiata en un suelo ñadi, con diferentes tratamientos de drenaje, Región de Los Lagos, Chile. Thesis Ingeniería Forestal. Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Valdivia, Chile 66 pGoogle Scholar
  50. Vistoso E, Alfaro M, Saggar S, Salazar F (2012) Effect of nitrogen inhibitors on nitrous oxide emissions and pasture growth following an autumn application in a volcanic soil. Chil J Agric Res. 72:133–139CrossRefGoogle Scholar
  51. Zalesny JA, Zalesny RS Jr, Wiese AH, Sexton B, Hall RB (2008) Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate. Environ Pollut. 155:72–80CrossRefGoogle Scholar
  52. Zas R, Serrada F (2003) Foliar nutrient status and nutritional relationships of young Pinus radiata D. Don plantations in northwest Spain. Forest Ecol Manag 174:167–176CrossRefGoogle Scholar
  53. Zunino H, Borie F, Aguilera M, Martín JP, Haider K (1982) Decomposition of 14C-labeled glucose, plant and microbial products and phenols in volcanic ash-derived soils of Chile. Soil Biol Biochem. 14:37–43CrossRefGoogle Scholar

Copyright information

© Sociedad Chilena de la Ciencia del Suelo 2019

Authors and Affiliations

  1. 1.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)La SerenaChile
  2. 2.Centro de Investigación en Suelos Volcánicos (CISVo)Universidad Austral de ChileValdiviaChile
  3. 3.Departamento de Gestión AgrariaUniversidad de Santiago de ChileSantiagoChile

Personalised recommendations