Advertisement

Reproduction and demography of an Aphidophagous ladybird, Hippodamia variegata on six aphid species

  • Ahmad PervezEmail author
  • Aline de Holanda Nunes Maia
  • Hakan Bozdoğan
Original Research Article

Abstract

We tested six aphid species, viz. Aphis gossypii, Aphis craccivora, Brevicoryne brassicae, Lipaphis erysimi, Myzus persicae and Uroleucon compositae as essential foods needed for the reproduction and demography of an aphidophagous ladybird, Hippodamia variegata. Females were highly fecund (1210.8 ± 55.31 eggs) with prolonged oviposition period (56.30 ± 2.36 days) and laying most viable eggs (92.91 ± 0.81%) when fed on A. gossypii (reared on Lagenaria vulgaris) with the highest net reproductive rate (449.45 ± 20.53 females / female). Aphis craccivora (raised on Dolichos lablab) supported optimal value for intrinsic rate of increase (0.183 ± 0.003) with the shortest generation time (32.40 ± 0.557 days). Other diets didn’t show improved performance but quantified as essential foods. Brassica hosted B. brassicae and L. erysimi were less suitable but not the rejected prey. Age-specific fecundity of female H. variegata was triangular in function with peak oviposition during her early reproductive age when fed on either A. gossypii, A. craccivora, U. compositae or M. persicae, while peak skewed towards later reproductive age when fed on B. brassicae or L. erysimi. Fecundity was positively correlated with egg-viability and oviposition period. We used jackknife technique to estimate and compare the demographic parameters within the groups. High values of intrinsic and finite rates of increase on A. gossypii and A. craccivora affirm their suitability for augmentative rearing of H. variegata. We conclude that both A. gossypii and A. craccivora on above respective host-plants are highly suitable aphid-diets for mass-multiplication of H. variegata.

Keywords

Hippodamia variegata Coccinellidae Aphis gossypii Demography Aphids Prey 

Notes

Acknowledgements

We thank Dr. Barbara Castleton, ESL Instructor, South Seattle College, Seattle, Washington, USA for improving the language of the manuscript. We also thank the two anonymous reviewers for critically going through the manuscript and providing fruitful suggestions. AP is thankful to Science and Engineering Research Board, Department of Science and Technology, Government of India for the financial assistance (EMR/2016/006296).

Compliance with ethical standards

The authors declare that they have prepared the manuscript by the compliance with ethical standards. All the authors read and approved the final manuscript. The manuscript has been prepared by the consent of all the authors.

Conflict of interests

The authors declare that they have no conflict of interests.

References

  1. Ahuja I, Rohloff J, Bones AM (2010) Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agron Sustain Dev 30:311–348CrossRefGoogle Scholar
  2. Branquart E, Hemptinne J-L (2000) Development of ovaries, allometry of reproductive traits and fecundity of Episyrphus balteatus (Diptera: Syrphidae). Euro J Entomol 97:165–170CrossRefGoogle Scholar
  3. Brent R (1973) Algorithms for minimization without derivatives. Prentice-Hall, Englewood CliffsGoogle Scholar
  4. Bridges M, Jones AME, Bones AM, Hodgson C, Cole R, Bartlet E, Wallsgrove R, Karapapa VK, Watt N, Rossiter JT (2002) Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant. Proc R Soc Lond B 269:187–191CrossRefGoogle Scholar
  5. Cheng Y, Zhi J, Li F, Jin J, Zhou Y (2018) An artificial diet for continuous maintenance of Coccinella septempunctata adults (Coleoptera: Coccinellidae). Biocontrol Sci Tech 28:242–252CrossRefGoogle Scholar
  6. de Lima MS, Melo JWS, Barros R (2018) Alternative food sources for the ladybird Brumoides foudrasii (Mulsant) (Coleoptera: Coccinellidae). Braz J Biol 78:211–216PubMedCrossRefGoogle Scholar
  7. Dixon AFG (2000) Insect predator-prey dynamics, ladybird beetles and biological control. Cambridge University Press, Cambridge, 257 ppGoogle Scholar
  8. Dixon AFG, Agarwala BK (2002) Triangular fecundity function and ageing in ladybird beetles. Ecol Entomol 27:433–440CrossRefGoogle Scholar
  9. Evans EW, Gunther DI (2005) The link between food and reproduction in aphidophagous predators: a case study with Harmonia axyridis (Coleoptera: Coccinellidae). Euro J Entomol 102:423–430CrossRefGoogle Scholar
  10. Ferrer A, Dixon AFG, Hemptinne J-L (2008) Prey preference of ladybird larvae and its impact on larval mortality, some life-history traits of adults and female fitness. Bull Insectol 61:5–10Google Scholar
  11. Francis F, Haubruge E, Gasper E (2000) Influence of host plants on specialist / generalist aphids and on the development of Adalia bipunctata (Coleoptera: Coccinellidae). Euro J Entomol 97:481–485CrossRefGoogle Scholar
  12. Gumovskaya GN (1985) The coccinellid fauna. Zashchita Rastenii 11:43Google Scholar
  13. Hodek I, Evans EW (2012) Food relationship. In: Hodek I, van Emden HF, Honek A (eds) Ecology and behaviour of ladybird beetles (Coccinellidae). Wiley-Blackwell, West Sussex, pp 141–274CrossRefGoogle Scholar
  14. Hodek I, van Emden HF, Honek A (2012) Ecology and behavior of the ladybird beetles (Coccinellidae). Wiley-Blackwell, West Sussex, 531 ppCrossRefGoogle Scholar
  15. Honek A, Dixon AFG, Martinkova Z (2008a) Body size, reproductive allocation, and maximum reproductive rate of two species of aphidophagous Coccinellidae exploiting the same resource. Entomol Exp Appl 127:1–9CrossRefGoogle Scholar
  16. Honek A, Dixon AFG, Martinkova Z (2008b) Body size and the temporal sequence in the reproductive activity of two species of aphidophagous coccinellids exploiting the same resource. Euro J Entomol 105:421–425CrossRefGoogle Scholar
  17. Hukusima S, Kamei M (1970) Effects of various species of aphids as food on development, fecundity and longevity of Harmonia axyridis Pallas (Coleoptera: Coccinellidae). Res Bull Faculty Agric Gifu Univ 29:53–66Google Scholar
  18. Husebye H, Arzt S, Burmeister WP, Hartel FV, Brandt A, Rossiter JT, Bones AM (2005) Crystal structure at 1.1 Å resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to beta-glucosidases. Insect Biochem Mol Biol 35:1311–1320PubMedCrossRefGoogle Scholar
  19. Jafari R (2011) Biology of Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae) on Aphis fabae Scopoli (Hemiptera: Aphididae). J Plant Protection Res 51:190–194CrossRefGoogle Scholar
  20. Jalali MA, Michaud JP (2012) Aphid-plant interactions affect the suitability of Myzus spp. as prey for the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Euro J Entomol 109:345–352CrossRefGoogle Scholar
  21. Jones AME, Winge P, Bones AM, Cole R, Rossiter JT (2002) Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochem Mol Biol 32:275–284PubMedCrossRefGoogle Scholar
  22. Kalushkov P, Hodek I (2005) The effects of six species of aphids on some life history parameters of the ladybird Propylea quatuordecimpunctata (Coleoptera: Coccinellidae). Euro J Entomol 102:449–452CrossRefGoogle Scholar
  23. Keshavarz M, Seiedy M, Allahyar H (2015) Preference of two populations of Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) for Aphis fabae and Aphis gossypii (Homoptera: Aphididae). Euro J Entomol 112:560–563CrossRefGoogle Scholar
  24. Kontodimas DC, Stathas GJ (2005) Phenology, fecundity and life table parameters of the predator Hippodamia variegata reared on Dysaphis crataegi. BioControl 50:223–233CrossRefGoogle Scholar
  25. Kos M, Kabouw P, Noordam R, Hendriks K, Vet LEM, Van Loon JJA, Dicke M (2011) Prey-mediated effects of glucosinolates on aphid predators. Ecol Entomol 36:377–388CrossRefGoogle Scholar
  26. Kos M, Houshyani B, Achhami BB, Wietsma R, Gols R, Weldegergis BT, Kabouw P, Bouwmeester HJ, Vet LEM, Dicke M, Loon JJA (2012) Herbivore-mediated effects of glucosinolates on different natural enemies of a specialist aphid. J Chem Ecol 38:100–115PubMedPubMedCentralCrossRefGoogle Scholar
  27. Krafsur ES, Obrycki JJ, Nariboli P (1996) Gene flow in colonizing Hippodamia variegata ladybird beetle populations. J Hered 87:41–47CrossRefGoogle Scholar
  28. Lanzoni A, Accineli G, Bazzocchi G, Burgio G (2004) Biological traits and life table of the exotic Harmonia axyridis compared with Hippodamia variegata, and Adalia bipunctata (col, Coccinellidae). J Appl Entomol 128:298–306CrossRefGoogle Scholar
  29. Lundgren JG (2009) Nutritional aspects of non-prey foods in the life histories of predaceous Coccinellidae. Biol Control 51:294–305CrossRefGoogle Scholar
  30. Maia AHN, Luiz AJB, Campanhola C (2000) Statistical inferences on associated lifetable parameters using jackknife technique: computational aspects. J Econ Entomol 93:511–518CrossRefGoogle Scholar
  31. Maia AHN, Pazianotto RAA, Luiz AJB, Prado JSM, Pervez A (2014) Inference on arthropod demographic parameters: computational advances using R. J Econ Entomol 107:432–439CrossRefGoogle Scholar
  32. Mehrparvar M, Arab NM, Weisser WW (2013) Diet-mediated effects of specialized tansy aphids on survival and development of their predators: is there any benefit of dietary mixing? Biol Control 65:142–146CrossRefGoogle Scholar
  33. Moghaddam MG, Golizadeh A, Hassanpour M, Rafiee-Dastjerdi H, Razmjou J (2016) Demographic traits of Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae) fed on Sitobion avenae Fabricius (Hemiptera: Aphididae). J Crop Prot 5:431–445CrossRefGoogle Scholar
  34. Natskova V (1973) The effect of aphid predators on the abundance of aphids on peppers. Rastit Zashch 21:20–22Google Scholar
  35. Nedved O, Salvucci S (2008) Ladybird Coccinella septempunctata (Coleoptera: Coccinellidae) prefers toxic prey in laboratory choice experiment. Euro J Entomol 105:431–436CrossRefGoogle Scholar
  36. Nicoli G, Limonta L, Gavazzuti C, Pozzati M (1995) The role of hedges in the agroecosystem. Initial studies on the coccinellid predators of aphids. Inform Fitopathol 45:7–8Google Scholar
  37. Obatake H, Suzuki H (1985) On the isolation and identification of canavanine and ethanolamine contained in the young leaves of black locus, Robinia pseudoaccacia, lethal for the ladybeetle, Harmonia axyridis. Tech Bull Faculty Agric Kagawa Univ 36:107–115Google Scholar
  38. Okamoto H (1966) Three problems of prey specificity of aphidophagous coccinellids. In: Hodek I (ed) Ecology of aphidophagous insects. Academia, Prague and W. Junk, The Hague, pp 45–46Google Scholar
  39. Omkar and Mishra G. (2005) Preference–performance of a generalist predatory ladybird: A laboratory study. Biol Control 34:187–195CrossRefGoogle Scholar
  40. Omkar and Pervez A. (2004) Functional and numerical responses of Propylea dissecta (Mulsant) (Col., Coccinellidae). J Appl Entomol 128:140–146CrossRefGoogle Scholar
  41. Omkar and Pervez A. 2016. Ladybird beetles. In: Omkar (ed) Ecofriendly Pest Management for Food Security. Academic Press, Chapter 9, 281–310Google Scholar
  42. Omkar and Srivastava S. (2003) Influence of six aphid prey species on development and reproduction of a ladybird beetle, Coccinella septempunctata. BioControl 48:379–393CrossRefGoogle Scholar
  43. Omkar, Kumar G, Sahu J (2009) Performance of a predatory ladybird beetle, Anegleis cardoni (Coleoptera: Coccinellidae) on three aphid species. Euro J Entomol 106:565–572CrossRefGoogle Scholar
  44. Papanikolaou NE, Milonas PG, Kontodimas DC, Demiris N, Matsinos YG (2014) Life table analysis of Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) at constant temperatures. Ann Entomol Soc Am 107:158–162CrossRefGoogle Scholar
  45. Patel RA (2015) Feeding potentiality of Menochilus sexmaculatus fab. On different aphid species. Int J Recent Innov Trends Comput Commun 3:4426–4430Google Scholar
  46. Pervez A, Maurice N (2011) Polyandry affects the reproduction and progeny of a ladybird beetle, Hippodamia variegata (Goeze). Euro J Environ Sci 1:19–23Google Scholar
  47. Pervez A, Omkar S (2004a) Prey dependent life attributes of an aphidophagous ladybird beetle, Propylea dissecta (Mulsant). Biocontrol Sci Tech 14:385–396CrossRefGoogle Scholar
  48. Pervez A, Omkar S (2004b) Temperature dependent life attributes of an aphidophagous ladybird, Propylea dissecta (Mulsant). Biocontrol Sci Tech 14:587–594CrossRefGoogle Scholar
  49. Pervez A, Omkar S (2005) Functional response of coccinellid predators: an illustration of a logistic approach. J Insect Sci 5:1–6CrossRefGoogle Scholar
  50. Pervez A, Pooja, Bozdogan H (2018) Predation potential of a biocontrol agent, Hippodamia variegata against the aphid, Aphis gossypii. J Bioinnov 7(2):185–192Google Scholar
  51. Pervez A, Singh S (2013) Body size dependent mating patterns of an aphidophagous ladybird, Hippodamia variegata. Euro J Environ Sci 3:109–112Google Scholar
  52. Pratt C (2008) Accumulation of glucosinolates by the cabbage aphid Brevicoryne brassicae as a defense against two coccinellid species. J Chem Ecol 34:323–329PubMedCrossRefGoogle Scholar
  53. Priyadarshani TDC, Hemachandra KS, Sirisena UGAI, Wijayaguasekara HNP (2016) Developmental biology and feeding efficiency of Menochilus sexmaculatus (Coleoptera: Coccinellidae) (Fabricius) reared on Aphis craccivora (Hemiptera: Aphididae) (Koch). Trop Agric Res 27:115–122CrossRefGoogle Scholar
  54. R Development Core Team. 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3–900051–07-0, URL http://www.R-project.org
  55. Rakhshan, Ahmad ME (2013) Influence of host plants on the growth and development of Cheilomenes sexmaculata (Fabricius) (Coleoptera: Coccinellidae) prey on Aphis craccivora Koch. Int J Sci Res 4:250–254Google Scholar
  56. Rana JS, Dixon AFG, Jarošík V (2002) Costs and benefits of prey specialization in a generalist insect predator. J Anim Ecol 71:15–22CrossRefGoogle Scholar
  57. Riddick EW, Rojas MG, Wu Z (2011) Lima bean- lady beetle interactions: spider mites mediate sublethal effects of its host plant on growth and development of its predator. Arthropod-Plant Inte 5:287–296CrossRefGoogle Scholar
  58. Sloggett JJ (2008a) Habitat and dietary specificity in aphidophagous ladybirds (Coleoptera: Coccinellidae): explaining specialization. Proc Neth Entomol Soc Meet 19:95–113Google Scholar
  59. Sloggett JJ (2008b) Weighty matters: body size, diet and specialization in aphidophagous ladybird beetles (Coleoptera: Coccinellidae). Euro J Entomol 105:381–389CrossRefGoogle Scholar
  60. Soares AO, Coderre D, Schanderl H (2004) Dietary self-selection behaviour by the adults of the aphidophagous ladybeetle Harmonia axyridis (Coleoptera: Coccinellidae). J Anim Ecol 73:478–486CrossRefGoogle Scholar
  61. Sun YX, Hao Y, Riddick EW, Liu TX (2017) Factitious prey and artificial diets for predatory lady beetles: current situation, obstacles, and approaches for improvement: a review. Biocontrol Sci Tech 27:601–619CrossRefGoogle Scholar
  62. Wheeler AG Jr, Stoops CA (1996) Status and spread of the Palaearctic lady beetles Hippodamia variegata and Propylea quatuordecimpunctata (Coleoptera: Coccinellidae) in Pensylvania, 1993–1995. Entomol News 107:291–298Google Scholar
  63. Wu XH, Zhou XR, Pang BP (2010) Influence of five host plants of Aphis gossypii glover on some population parameters of Hippodamia variegata (Goeze). J Pest Sci 83:77–83CrossRefGoogle Scholar
  64. Yu J-Z, Chi H, Chen BH (2013) Comparison of the life tables and predation rates of Harmonia dimidiata (F.) (Coleoptera: Coccinellidae) fed on Aphis gossypii glover (Hemiptera: Aphididae) at different temperatures. Biol Control 64:1–9CrossRefGoogle Scholar
  65. Zanganeh L, Madadi H, Allahyari H (2015) Demographic parameters of Diuraphis noxia (Hemiptera: Aphididae) and Hippodamia variegata (Coleoptera: Coccinellidae) recorded in the context of D. noxia infesting resistant and susceptible cultivars of wheat. Euro J Entomol 112:453–459CrossRefGoogle Scholar

Copyright information

© African Association of Insect Scientists 2020

Authors and Affiliations

  • Ahmad Pervez
    • 1
    Email author
  • Aline de Holanda Nunes Maia
    • 2
  • Hakan Bozdoğan
    • 3
  1. 1.Biocontrol Laboratory, Department of ZoologyRadhey Hari Govt. P.G. CollegeNagarIndia
  2. 2.Embrapa Meio AmbienteJaguariúnaBrazil
  3. 3.Vocation School of Technical Sciences, Department of Plant and Animal ProductionKırşehir Ahi Evran UniversityKırşehirTurkey

Personalised recommendations