Advertisement

Dispersal and survival of radio-sterilised male Aedes albopictus Skuse (Diptera: Culicidae) and estimation of the wild populations in view of an sterile insect technique programme in Pointe des Lascars, Mauritius

  • Diana Pillay IyalooEmail author
  • David Damiens
  • Sunita Facknath
  • Khouaildi Bin Elahee
  • Ambicadutt Bheecarry
Original Research Article
  • 15 Downloads

Abstract

The survival and dispersal of irradiated and non-irradiated Aedes albopictus Skuse (Diptera: Culicidae) males, bred in mass-rearing larval racks, were investigated during three mark-release-recapture trials in Pointe des Lascars (PDL), a village in Mauritius. Adult males of 1-day-old, 3-day-old and 5-day-old, were released in two different ecotypes (inhabited village center and forest). Overall recapture rates ranged from 2.9 to 8.6% which supports the use of the ‘Mosquibat’, a hand-held device conceived during this study, for collecting Ae. albopictus males. Irradiation and age of males at release, did not significantly affect their recapture and dispersal while ecotype and climatic seasons had a visible effect on both parameters. The average mean distance travelled (MDT) by males in the forest was greater than those in the village center (ranging from 89.6 to 120.8 m and 55.5 to 84.2 m respectively). Furthermore, an important Ae. albopictus population exhibiting characteristic seasonal fluctuations is present in PDL with mean male estimates ranging from 622 (95% CI, 471–773) to 3344 (95% CI, 2258–4429) males per hectare during the study. Hence, should an SIT programme be implemented against the vector in PDL, a reduction of its wild population by conventional control methods is highly desirable prior to releases.

Keywords

Mosquito Mark-release-recapture SIT Irradiation Population estimation 

Notes

Acknowledgements

This study is part of a PhD thesis sponsored by the International Atomic Energy Agency (IAEA) under MAR 5019 and Coordinated Research Programme D44002. The authors are also thankful to field officers of the Vector Biology and Control Division (Min. of Health and Quality of Life, Mauritius) for their participation in the collection of adult mosquitoes and to Clelia Oliva for her valuable ideas in the conception of the ‘Mosquibat’.

Supplementary material

42690_2019_17_MOESM1_ESM.xlsx (168 kb)
ESM 1 (XLSX 167 kb)
42690_2019_17_MOESM2_ESM.xlsx (32 kb)
ESM 2 (XLSX 32 kb)
42690_2019_17_MOESM3_ESM.docx (317 kb)
ESM 3 (DOCX 317 kb)

References

  1. Abdel-Malek AA, Tantawy AO, Wakid AM (1967) Studies on the eradication of Anopheles pharoensis Theobald by the sterile male technique using cobalt-60. III Determination of the sterile dose and its biological effects on different characters related to fitness components. J Econ Entomol 60(1):20–23Google Scholar
  2. Ageep TB, Damiens D, Alsharif B, Ahmed A, Salih EHO, Ahmed FTA, Diabaté A, Lees RS, Gilles JRL, El Sayed BB (2014) Participation of irradiated Anopheles arabiensis males in swarms following field release in Sudan. Malar J 13(1):484–494Google Scholar
  3. Armbruster P, Hutchinson RA, Linvell T (2000) Equivalent inbreeding depression under laboratory and field conditions in a tree-hole breeding mosquito. Proc R Soc Lond 267:839–945Google Scholar
  4. Asman SM, Knop NF, Blomquist RE (1983) Preliminary studies to identify selection factors in the laboratory colonization of Culex tarsalis. Florida Anti-Mosquito Association 54(1):16–21Google Scholar
  5. Balestrino F, Medici A, Candini G, Carrieri M, Maccagnani B, Calvitti M, Maini S, Bellini R (2010) Gamma-ray dosimetry and mating capacity studies in the laboratory on Aedes albopictus males. J Med Entomol 47(4):581–591Google Scholar
  6. Balestrino F, Puggioli A, Gilles JRL, Bellini R (2014) Validation of a new larval rearing unit for Aedes albopictus (Diptera: Culicidae) mass rearing. PLoS One 9(3):e91914Google Scholar
  7. Beesoon S, Funkhouser E, Kotea N, Spielman A, Robich RM (2008) Chikungunya fever, Mauritius, 2006. Emerg Infect Dis 14(2):337–338Google Scholar
  8. Bellini R, Calvitti M, Medici A, Carrieri M, Celli G, Maini S (2007) In: Vreysen MJB, Robinson AS, Hendrichs J (eds) Use of the sterile insect technique against Aedes albopictus in Italy: first results of a pilot trial, area-wide control of insect pests: from research to field implementation. Springer, Dordrecht, pp 505–515Google Scholar
  9. Bellini R, Albieri A, Balestrino F, Carrieri M, Porretta D, Urbanelli S, Calvitti M, Riccardo MR, Maini S (2010) Dispersal and survival of Aedes albopictus (Diptera: Culicidae) males in Italian urban areas and significance for sterile insect technique application. J Med Entomol 47(6):1082–1091Google Scholar
  10. Benedict M, Robinson A (2003) The first releases of transgenic mosquitoes: an argument for the sterile insect technique. Trends Parasitol 19(8):349–355Google Scholar
  11. Benedict M, D'abbs P, Dobson S, Gottlieb M, Harrington L, Higgs S, James A, James S, Knols B, Lavery J, O'neill S (2008) Guidance for contained field trials of vector mosquitoes engineered to contain a gene drive system: recommendations of a scientific working group. Vector Borne Zoonotic Dis 8(2):127–166Google Scholar
  12. Benedict MQ, Knols BGJ, Bossin HC, Howell PI, Mialhe E, Caceres C, Robinson AS (2009) Colonisation and mass rearing: learning from others. Malar J 8:S4Google Scholar
  13. Bonnet DD, Worcester DJ (1946) The dispersal of Aedes albopictus in the territory of Hawaii. Am J Trop Med Hyg 26(4):465–476Google Scholar
  14. Briegel H, Timmermann SE (2001) Aedes albopictus (Diptera: Culicidae): physiological aspects of development and reproduction. J Med Entomol 38(4):566–571Google Scholar
  15. Clarke III JL, Rowley WA, Asman SM (1983) The effect of colonization on the laboratory flight ability of Culex tarsalis (Diptera: Culicidae). Journal of the Florida Anti-Mosquito Association 54(1):23–26Google Scholar
  16. Coleman PG, Alphey L (2004) Genetic control of vector populations: an imminent prospect. Trop Med Int Health 9(4):433–437Google Scholar
  17. Curtis CF (1976) Radiation sterilization. Report on mosquito research. Ross Institute of Tropical Hygiene 01.01.76–31.12.77Google Scholar
  18. Damiens D, Tjeck PO, Lebon C, Le Goff G, Gouagna LC (2016) The effects of age at first mating and release ratios on the mating competitiveness of gamma-sterilised Aedes albopictus males under semi field conditions. J Vec Biol 1(6):29–31Google Scholar
  19. Delatte H, Gimonneau G, Triboire A, Fontenille D (2009) Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J Med Entomol 46(1):33–41Google Scholar
  20. Downes JA (1969) The swarming and mating flight of Diptera. Annu Rev Entomol 14(1):271–298Google Scholar
  21. Facchinelli L, Valerio L, Pombi M, Reiter P, Costantini C, Della TA (2007) Development of a novel sticky trap for container-breeding mosquitoes and evaluation of its sampling properties to monitor urban populations of Aedes albopictus. Med Vet Entomol 21(2):183–195Google Scholar
  22. Gouagna LC, Dehecq J, Fontenille D, Dumont Y, Boyer S (2015) Seasonal variation in size estimates of Aedes albopictus population based on standard mark–release–recapture experiments in an urban area on Reunion Island. Acta Trop 143:89–96Google Scholar
  23. Haeger JS, O’meara GF (1970) Rapid incorporation of wild genotypes of Culex nigripalpus (Diptera: Culicidae) into laboratory adapted strains. J Econ Entomol 63(5):1390–1391Google Scholar
  24. Harrington LC, Scott TW, Lerdthusnee K (2005) Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72(2):209–220Google Scholar
  25. Hawley WA (1988) The biology of Aedes albopictus. J Am Mosq Control Assoc 4(1):1–40Google Scholar
  26. Hemme RR, Thomas CL, Chadee DD, Severson DW (2010) Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Negl Trop Dis 4(3):e634Google Scholar
  27. Honório NA, Silva WDC, Leite PJ, Gonçalves JM, Lounibos LP, Lourenço-De-Oliveira R (2003) Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the state of Rio de Janeiro, Brazil. Mem Inst Oswaldo Cruz 98(2):191–198Google Scholar
  28. Honório NA, Castro MG, Barros FSMD, Magalhães MDAFM, Sabroza PC (2009) The spatial distribution of Aedesaegypti and Aedesalbopictus in a transition zone, Rio de Janeiro, Brazil. Cad Saúde Pública 25(6):1203–1214Google Scholar
  29. Imam H, Ghulamuddin SZ, Seikh A (2014) The basic rules and methods of mosquito rearing (Aedes aegypti). Tropical Parasitology 4(1):53–55Google Scholar
  30. Issack M, Pursem V, Barkham T, Ng L, Inoue M, Manraj S (2010) Reemergence of dengue in Mauritius. Emerg Infect Dis 16(4):716–718Google Scholar
  31. Iyaloo DP, Elahee KB, Bheecarry A, Lees RS (2014) Guidelines to site selection for population surveillance and mosquito control trials: A case study from Mauritius. Acta Trop 132:140–149Google Scholar
  32. Knipling EF (1955) Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 48(4):459–462Google Scholar
  33. Knop NF, Asman SM, Reisen WK, Milby MM (1987) Changes in the biology of Culex tarsalis (Diptera: Culicidae) associated with colonization under contrasting regimes. Environ Entomol 16(2):405–414Google Scholar
  34. Lacroix R, Delatte H, Hue T, Reiter P (2009) Dispersal and survival of male and female Aedes albopictus (Diptera: Culicidae) on Reunion Island. J Med Entomol 46(5):1117–1124Google Scholar
  35. Leisnham PT, Ladeau SL, Juliano SA (2014) Spatial and temporal habitat segregation of mosquitoes in urban Florida. PLoS One 9(3):e91655Google Scholar
  36. Lillie TH, Marquardt WC, Jones RH (1981) The flight range of Culicoides mississipiensis (Diptera: Ceratopogonidae). Can Entomol 113(5):419–426Google Scholar
  37. Macgregor ME (1927) Mosquito Surveys. Baillière, Tindall and Cox, LondonGoogle Scholar
  38. Maciel-De-Freitas R, Neto RB, Gonçalves JM, Codeço CT, Lourenço-De-Oliveira R (2006) Movement of dengue vectors between the human modified environment and an urban forest in Rio de Janeiro. J Med Entomol 43(6):1112–1120Google Scholar
  39. Maciel-De-Freitas R, Codeco CT, Lourenço-De-Oliveira R (2007) Daily survival rates and dispersal of Aedes aegypti females in Rio de Janeiro, Brazil. Am J Trop Med Hyg 76(4):659–665Google Scholar
  40. Madakacherry O, Lees RS, Gilles JRL (2014) Aedes albopictus (Skuse) males in laboratory and semi-field cages: release ratios and mating competitiveness. Acta Trop 132:124–129Google Scholar
  41. Mahabir RS, Severson DW, Chadee DD (2012) Impact of road networks on the distribution of dengue fever cases in Trinidad, West Indies. Acta Trop 123(3):178–183.3Google Scholar
  42. Marini F, Caputo B, Pombi M, Tarsitani G, Della TA (2010) Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark–release–recapture experiments. Med Vet Entomol 24(4):361–368Google Scholar
  43. Mcdonald PT (1977) Population characteristics of domestic Aedes aegypti (Diptera: Culicidae) in villages on the Kenya coast. II Dispersal within and between villages. J Med Entomol 14 (1):49–53Google Scholar
  44. Mori A (1979) Effects of larval density and nutrition on some attributes of immature and adult Aedes albopictus. Trop Med 21(2):85–103Google Scholar
  45. Morin CW, Comrie AC, Ernst K (2013) Climate and dengue transmission: evidence and implications. Environ Health Perspect 121(11–12):1264–1272Google Scholar
  46. Morris CD, Larson VL, Lounibos LP (1991) Measuring mosquito dispersal for control programs. J Am Mosq Control Assoc 7(4):608–615Google Scholar
  47. Muir LE, Kay BH (1998) Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg 58(3):277–282Google Scholar
  48. Nelson RL, Milby MM (1980) Dispersal and survival of field and laboratory strains of Culex tarsalis (Diptera: Culicidae). J Med Entomol 17(2):146–150Google Scholar
  49. Niebylski ML, Craig GBJ (1994) Dispersal and survival of Aedes albopictus at a scrap tire yard in Missouri. J Am Mosq Control Assoc 10(3):339–343Google Scholar
  50. Oliva CF, Benedict MQ, Lempérière G, And Gilles JRL (2011) Laboratory selection for an accelerated mosquito sexual development rate. Malar J 10(1):135Google Scholar
  51. Oliva CF, Jacquet M, Gilles JRL, Lempérière G, Maquart PO, Quilici S, Schooneman F, Vreysen MJB, Boyer S (2012) The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: mating vigour of sterilized males. PLoS One 7:e49414Google Scholar
  52. Proverbs MD (1969) Induced sterilization and control in insects. Annu Rev Entomol 14(1):81–102Google Scholar
  53. Puggioli A, Balestrino F, Damiens D, Lees RS, Soliban SM, Madakacherry O, Dindo ML, Bellini R, Gilles JRL (2013) Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae). J Med Entomol 50(4):819–825Google Scholar
  54. Ramchurn SK, Goorah SSD, Mungla D, Ramsurrun B, Pydiah V, Summun A (2008) A study of the 2006 chikungunya epidemic outbreak in Mauritius. Internet Journal of Medical Update 3(1):11–21Google Scholar
  55. Ramchurn S.K., Moheeput K. and., Goorah S.S. (2009) An analysis of a short-lived outbreak of dengue fever in Mauritius. Euro Surveill 14 (34), 19314Google Scholar
  56. Reisen WK, Lothrop HD, Lothrop B (2003) Factors influencing the outcome of mark-release-recapture studies with Culex tarsalis (Diptera: Culicidae). J Med Entomol 40(6):820–829Google Scholar
  57. Russell RC, Webb CE, Williams CR, Ritchie SA (2005) Mark-release-recapture study to measure dispersal of the mosquito Aedes aegypti in Cairns, Queensland, Australia. Med Vet Entomol 19 (4):451–457Google Scholar
  58. Schultz GW (1993) Seasonal abundance of dengue vectors in Manilla, Republic of the Philippines. Southeast Asian J Trop Med Public Health 24(2):369–375Google Scholar
  59. Service MW (1980) Effects of wind on the behaviour and distribution of mosquitoes and blackflies. Int J Biometeorol 24:347–353Google Scholar
  60. Service MW (1997) Mosquito (Diptera: Culicidae) dispersal-the long and short of it. J Med Entomol 34(6):579–588Google Scholar
  61. Takagi M, Tsuda Y, Wada Y (1995) Temporal and spatial distribution of released Aedes albopictus (Diptera: Culicidae) in Nagasaki, Japan. Jpn J Sanit Zool 46(3):223–228Google Scholar
  62. Trpis M, Hausermann W (1986) Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne disease. Am J Trop Med Hyg 35(6):1263–1279Google Scholar
  63. Tun-Lin W, Kay BH, Barnes A (1995) Understanding productivity, a key to Aedes aegypti surveillance. Am J Trop Med Hyg 53(6):595–601Google Scholar
  64. Waldock J, Chandra NL, Lelieveld J, Proestos Y, Michael E, Christophides G, Parham PE (2013) The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology. Pathog Glob Health 107(5):224–241Google Scholar
  65. White DJ, Morris CD, Green C (1985) Seasonal distribution of northern New York State antropophilic Tabanidae (Diptera) and the observations on the dispersal of several species. Environ Entomol 14(2):187–192Google Scholar
  66. Winskill P, Carvalho DO, Capurro ML, Alphey L, Donnelly CA, McKemey AR (2015) Dispersal of Engineered Male Aedes aegypti Mosquitoes. PLoS Negl Trop Dis 9(11):e0004156Google Scholar
  67. Yadav K, Dhiman S, Baruah I, Singh L (2010) Effect of gamma radiation on survival and fertility of male Anopheles stephensi Liston, irradiated as Pharate adults. J Ecobiotechnol 2(4):6–10Google Scholar

Copyright information

© African Association of Insect Scientists 2019

Authors and Affiliations

  • Diana Pillay Iyaloo
    • 1
    • 2
    Email author
  • David Damiens
    • 3
    • 4
  • Sunita Facknath
    • 1
  • Khouaildi Bin Elahee
    • 2
  • Ambicadutt Bheecarry
    • 2
  1. 1.Faculty of AgricultureUniversity of MauritiusReduitMauritius
  2. 2.Vector Biology and Control Division, Ministry of Health & Quality of LifeCurepipeMauritius
  3. 3.UMR MIVEGEC (CNRS/IRD/University of Montpellier): Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et ContrôleInstitut de Recherche pour le Développement (IRD)MontpellierFrance
  4. 4.IRD Réunion / GIP CYROI (Recherche Santé Bio-innovation)Sainte ClotildeFrance

Personalised recommendations