Advertisement

The comparison between label-free and non-cross-linking methods with gold nanoparticles for colorimetric detection of Paracoccidioides brasiliensis

  • M. A. Cândido
  • O. O. Comparato-Filho
  • I. R. Oliveira
  • M. L. Castilho
  • L. RanieroEmail author
Original Article
  • 43 Downloads

Abstract

Introduction

Paracoccidioidomycosis is a systemic fungal disease caused by thermos-dimorphic fungus Paracoccidioides brasiliensis (P. brasiliensis). Gold nanoparticles (AuNPs) are used in diagnosis because of its versatility and biocompatibility, optical properties influenced by surface plasmon resonance, and the size and geometry.

Methods

The colorimetric detection of the fungus P. brasiliensis was performed by AuNPs and specific 5.8S ribosomal complementary DNA sequence probe. The label-free methodologies had a final concentration of 2.22 nM, 155.95 nM, and 433.33 μM for AuNPs, primers, and MgCl2.6H2O solution, respectively. For the non-cross-linking method, the final concentration of the thiolate oligonucleotides and MgCl2.6H2O solution were 291.54 mM and 0.39 mM, respectively.

Results

The Gaussian curve analyses provided Gaussian center, full width at half maximum value, and Gaussian area, which are complementary colorimetric results. The test accuracy calculated using ROC curve analyses for the label-free and non-cross-linking methods were found to be 0.994 and 0.976, respectively. The sensitivity and specificity were 92% and 98.1%, respectively for label free, and 92% and 80%, respectively, for non-cross-linking test.

Conclusion

The alternative methodologies can be used in colorimetric detection of fungus P. brasiliensis, which the rRNA sequence could be differentiated by alteration in their staining and confirmed by the Gaussian curve and ROC curve analyses.

Graphical abstract

Representations of the colorimetric tests methodologies free label (left) and non-cross-linking (right)

Keywords

Paracoccidioides brasiliensis rRNA Gold nanoparticle Label free Box plots ROC curve 

Notes

Funding information

This work was supported by the grant of the FAPESP (Project 2015/10156-3),CNPq (470534/2012-5 and 302132/2015-5), and FINEP (Conv. 01.13.0275.00).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.  https://doi.org/10.1056/NEJMoa1203208.CrossRefGoogle Scholar
  2. Ambrosio AVA, Camelo CCS, Barbosa CV, Tomazatti FG, FAS B, Veloso JM, et al. Paracoccidioidomicose (doença de Lutz-Splendore-Almeida): propedêutica complementar, diagnóstico diferencial, controle de cura. Rev Med Minas Gerais. 2014;24(1):81–92.  https://doi.org/10.5935/2238-3182.20140021.Google Scholar
  3. Azubel M, Koivisto J, Malola S, Bushnell D, Hura GL, Koh AL, et al. Electron microscopy of gold nanoparticles at atomic resolution. Science. 2014;345(6199):909–12.  https://doi.org/10.1126/science.1251959.CrossRefGoogle Scholar
  4. Beck CC, Lopes ADS, Pitanga FJG. Anthropometric indicators as predictors of high blood pressure in adolescents. Arq Bras Cardiol. 2011;96(2):126–33  https://doi.org/10.1590/S0066-782X2010005000153.CrossRefGoogle Scholar
  5. Cancino J, Marangoni VS, Zucolotto V. Nanotechnology in medicine: concepts and concerns. Química Nova. 2014;37(3):521–6.  https://doi.org/10.5935/0100-4042.20140086.CrossRefGoogle Scholar
  6. Cardoso MAG, Tambor José HM, Nobrega FG. The mitochondrial genome from the thermal dimorphic fungus Paracoccidioides brasiliensis. Yeast. 2007;24(7):607–16.  https://doi.org/10.1002/yea.1500.CrossRefGoogle Scholar
  7. Castilho ML, Vieira LS, Campos APC, Achete CA, Cardoso MAG, Raniero L. The efficiency analysis of gold nanoprobes by FT-IR spectroscopy applied to the non-cross-linking colorimetric detection of Paracoccidioides brasiliensis. Sensors Actuators B. 2015;215:258–65.  https://doi.org/10.1016/j.snb.2015.03.052.CrossRefGoogle Scholar
  8. Cerda J, Cifuentes L. Uso de curvas ROC en investigación clínica: Aspectos teórico-prácticos. Rev Chil Infectol. 2012;29(2):138–41.  https://doi.org/10.4067/S0716-10182012000200003.
  9. Costa MN, Veigas B, Jacob JM, Santos DS, Gomes J, Baptista PV, et al. A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology. 2014;25:094006 (12pp).  https://doi.org/10.1088/0957-4484/25/9/094006.CrossRefGoogle Scholar
  10. Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):410–22.  https://doi.org/10.3109/21691401.2014.955107.CrossRefGoogle Scholar
  11. dos Santos PO, Rodrigues AM, Fernandes GF, da Silva SHM, Burger E, de Camargo ZP. Immunodiagnosis of paracoccidioidomycosis due to Paracoccidioides brasiliensis using a latex test: detection of specific antibody anti-gp43 and specific antigen gp43. PLoS Negl Trop Dis. 2015;9(2):e0003516.  https://doi.org/10.1371/journal.pntd.0003516.CrossRefGoogle Scholar
  12. Fagundes J, Soto CAT, Vieira LS, Canevari RA, Fávero PP, Martin AA, et al. Ribosomal DNA nanoprobes studied by Fourier transform infrared spectroscopy. ScienceDirect. 2014;118:28–35.  https://doi.org/10.1016/j.saa.2013.08.057.Google Scholar
  13. Garcia PA, Dias J, Dias RC, Santos P, Zampa CC. A study on the relationship between muscle function, functional mobility and level of physical activity in community-dwelling elderly. Rev Bras Fisioter. 2011;15(1):15–22.  https://doi.org/10.1590/S1413-35552011000100005.
  14. Gaviria M, Rivera V, Muñoz-Cadavid C, Cano LE, Naranjo TW. Validation and clinical application of a nested PCR for paracoccidioidomycosis diagnosis in clinical samples from Colombian patients. Braz J Infect Dis. 2015;19(4):376–83.  https://doi.org/10.1016/j.bjid.2015.04.008.CrossRefGoogle Scholar
  15. Gegembauer G, Araujo LM, Pereira EF, Rodrigues AM, Paniago AMM, Hahn RC, et al. Serology of paracoccidioidomycosis due to Paracoccidioides lutzii. PLoS Negl Trop Dis. 2014;8(7):e2986.  https://doi.org/10.1371/journal.pntd.0002986.CrossRefGoogle Scholar
  16. Jeong EH, Jung G, Am hong C, Lee H. Gold nanoparticle (AuNP)-based drug delivery and molecular imaging for biomedical applications. Arch Pharm Res. 2014;37(1):53–9.  https://doi.org/10.1007/s12272-013-0273-5. CrossRefGoogle Scholar
  17. Krzywinski M, Altman N. Points of significance: visualizing samples with box plots. Nat Methods. 2014;11(2):119–20.  https://doi.org/10.1038/nmeth.2813.
  18. Larguinho M, Baptista PV. Gold and silver nanoparticles for clinical diagnostics- from genomics o proteomics. SciVerse ScienceDirect. 2012;75:2811–23.  https://doi.org/10.1016/j.jprot.2011.11.007.
  19. Lee P, Meiseil D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J Phys Chem. 1982;86:3391–5.  https://doi.org/10.1021/j100214a025.
  20. Li H, Rothberg LJ. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc. 2004;126(35):10958–61.  https://doi.org/10.1021/ja048749n.
  21. Li N, Zhao P, Astruc D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed. 2014;53(7):1756–89.  https://doi.org/10.1002/anie.201300441.CrossRefGoogle Scholar
  22. Motoyama AB, Venancio EJ, Brandão GO, Petrofeza-Silva S, Pereira IS, Soares CM, et al. Molecular identification of Paracoccidioides brasiliensis by PCR amplification of ribosomal DNA. J Clin Microbiol. 2000, Aug;38(8):3106–9.Google Scholar
  23. Neto JV, dos Santos CB, Torres ÉM, Estrela C. Boxplot: a visual resource for analysis and interpretation of quantitative data. ROBRAC. 2017;26(76).Google Scholar
  24. Serpa LF, Santos VLCDG, Campanili TCGF, Queiroz M. Predictive validity of the Braden scale for pressure ulcer risk in critical care patients. Rev Lat Am Enfermagem. 2011;19(1):50–7.  https://doi.org/10.1590/S0104-11692011000100008.CrossRefGoogle Scholar
  25. Tiwari PM, Vig K, Dennis VA, Singh SR. Functionalized gold nanoparticles and their biomedical applications. Nanomaterials. 2011;1(1):31–63.  https://doi.org/10.3390/nano1010031.CrossRefGoogle Scholar
  26. Toma HE, Zamarion VM, Toma SH, ARAKI K. The coordination chemistry at gold nanoparticles. J Braz Chem Soc. 2010;21(7):1158–76.  https://doi.org/10.1590/S0103-50532010000700003.CrossRefGoogle Scholar
  27. Vieira L, Castilho ML, Ferreira I, Ferreira-Strixino J, Hewitt KC, Raniero L. Synthesis and characterization of gold nanostructured Chorin e6 for photodynamic therapy. Photodiagn Photodyn Ther. 2017;18:6–11.  https://doi.org/10.1016/j.pdpdt.2016.12.012.CrossRefGoogle Scholar
  28. Wang Z, Ma L. Gold nanoparticle probes. Coord Chem Rev. 2009;253(11):1607–18.  https://doi.org/10.1016/j.ccr.2009.01.005.

Copyright information

© Sociedade Brasileira de Engenharia Biomedica 2019

Authors and Affiliations

  • M. A. Cândido
    • 1
  • O. O. Comparato-Filho
    • 1
  • I. R. Oliveira
    • 2
  • M. L. Castilho
    • 3
  • L. Raniero
    • 1
    Email author
  1. 1.Laboratório de Nanossensores, Instituto de Pesquisa e DesenvolvimentoUniversidade do Vale do Paraíba, UNIVAPSão José dos CamposBrazil
  2. 2.Laboratório de Biocerâmica, Instituto de Pesquisa e DesenvolvimentoUniversidade do Vale do Paraíba, UNIVAPSão José dos CamposBrazil
  3. 3.Laboratório de Bionanotecnologia, Instituto de Pesquisa e DesenvolvimentoUniversidade do Vale do Paraíba, UNIVAPSão José dos CamposBrazil

Personalised recommendations