Advertisement

Vegetos

pp 1–5 | Cite as

Chromosomal characteristics in two different sexual phenotypes of Stichoneuron membranaceum

  • Supriya AdhikariEmail author
  • Sangram Sinha
  • Rabindra Kumar Sinha
Research Articles
  • 4 Downloads

Abstract

The present investigation has been focussed on mitotic and meiotic chromosome study of androdioecious Stichoneuron membranaceum from the state of Tripura. The somatic chromosome number in both the sexual phenotypes was found to be 2n = 18 having one pair of chromosomes bearing secondary constriction. Meiosis is regular and the presence of nine bivalents in pollen mother cells of male and hermaphrodite flowers suggest that the basic chromosome number is X = 9. The accentuated chromosome homology in androecious and hermaphrodite plants of S. membranaceum is the intrinsic character of their karyotypes.

Keywords

Androdioecious Hermaphrodite Karyotype Stemonaceae Stichoneuron membranaceum 

Notes

Acknowledgements

The first author is grateful to the DBT, Government of India for JRF Fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. Barbhuiya HA, Gogoi R (2010) Plant collections from Bangladesh in the Herbarium at Shillong (Assam), India. Bangl J Plant Taxon 17(2):141–165.  https://doi.org/10.3329/bjpt.v17i2.6695 CrossRefGoogle Scholar
  2. Brem B, Seger C, Pacher T, Hofer O, Vajrodaya S et al (2002) Feeding deterrence and contact toxicity of Stemona alkaloids—a source of potent natural insecticides. J Agric Food Chem 50:6383–6388CrossRefGoogle Scholar
  3. Deb DB (1983) The flora of Tripura State, vol II. Today and Tomorrows’ Printers and Publishers, New DelhiGoogle Scholar
  4. Duyfjes BEE (1991) Stemonaceae and Pentastemonaceae; with miscellaneous notes on members of both families. Blumea 36:239–252Google Scholar
  5. Greger H (2006) Structural relationships, distribution and biological activities of Stemona alkaloids. Planta Med 72:99–113.  https://doi.org/10.1055/s-2005-916258 CrossRefPubMedGoogle Scholar
  6. Hooker JD (1892) The flora of British India, vol VI. L. Reeve & Co, LondonGoogle Scholar
  7. Huziwara Y (1962) Karyotype analysis in some genera of compositae. VII. Further studies on the chromosome of Aster. Am J Bot 49:116–119.  https://doi.org/10.1002/j.1537-2197.1962.tb14916.x CrossRefGoogle Scholar
  8. Inthachub P, Vajrodaya S, Duyfjes BEE (2009) Review of the genus Stichoneuron (Stemonaceae). Edinburgh J Bot 66:213–228.  https://doi.org/10.1017/S0960428609005368 CrossRefGoogle Scholar
  9. Kaltenegger E, Brem B, Mereiter K, Kalchhauser H, Kählig H et al (2003) Insecticidal pyrido[1,2-a] azepine alkaloids and related derivatives from Stemona species. Phytochemistry 63:803–816.  https://doi.org/10.1016/S0031-9422(03)00332-7 CrossRefPubMedGoogle Scholar
  10. Kubitzki K (1998) Stemonaceae. The families and genera of vascular plants. Springer, Berlin, HeidelbergGoogle Scholar
  11. Levan A, Fredga K, Sandbery A (1964) Nomenclature for centromeric position on chromosomes. Heriditas 52:201–220.  https://doi.org/10.1111/j.1601-5223.1964.tb01953.x CrossRefGoogle Scholar
  12. Majumdar K, Datta BK (2013) Fruit and seed discoveries in Stichoneuron membranaceum Hook. F. (Stemonaceae): an endemic to Indo-Myanmar. Modern Phytomorphology 3:39–44.  https://doi.org/10.5281/zenodo.161592 CrossRefGoogle Scholar
  13. Mao AA, Hynniewta TM, Sanjappa M (2009) Plant wealth of northeast India with reference to ethnobotany. Indian J Trad Knowl 8:96–103Google Scholar
  14. Mungkornasawakul P, Pyne SG, Jatisatienr A, Supyen D, Jatisatienr C, Lie et al (2004) Phytochemical and larvicidal studies on Stemona curtisii: structure of a new pyrido[1,2- a] azepine Stemona alkaloid. J Nat Prod 67:675–677.  https://doi.org/10.1021/np034066u CrossRefPubMedGoogle Scholar
  15. Myers N, Mittermier RA, Mittermier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 40:853–858.  https://doi.org/10.1038/35002501 CrossRefGoogle Scholar
  16. Oginuma K, Horiuchi K, Fukuhura T (2001) Karyomorphology of two genera in Stemonaceae. Acta Phytotax Geobot 52:57–64Google Scholar
  17. Paszko A (2006) A critical review and a new proposal of karyotype asymmetry indices. Plant Syst Evol 258:39–48.  https://doi.org/10.1007/s00606-005-0389-2 CrossRefGoogle Scholar
  18. Peruzzi L, Eroglu HE (2013) Karyotype asymmetry: again how to measure and what to measure? Compar Cytogenet 7:1–9.  https://doi.org/10.3897/CompCytogen.v7i1.4431 CrossRefGoogle Scholar
  19. Pilli RA, Ferreira de oliveira MC (2000) Recent progress in the chemistry of the Stemona alkaloid. Nat Prod Rep 17:117–127.  https://doi.org/10.1039/A902437I CrossRefPubMedGoogle Scholar
  20. Pilli RA, Rosso GB, De Oliveira MDCF (2010) The chemistry of Stemona alkaloids: an update. Nat Prod Rep 27:1908–1937.  https://doi.org/10.1039/C005018K CrossRefPubMedGoogle Scholar
  21. Ramli RA (2015) Phytochemical biological studies on selected Stemona and Stichoneuron species (Stemonaceae). Doctoral Thesis University of WollongongGoogle Scholar
  22. Sanguanpong U, Hummel HE (2008) Toxicity of Stemona root against onion cutworm by using different contacting methods and solvents. Common Agri App Bio Sci 73:459–467Google Scholar
  23. Sharma AK, Sharma A (1980) Chromosome technique theory and practical, 3rd edn. Butter works Ltd, LondonGoogle Scholar
  24. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold Ltd, LondonGoogle Scholar
  25. Stöger EA (1999) Pharmacopoeia of Chinese Medicine. Monographs of the Arznbeibuches of the People’s Republic of China 1990 and 1995. Deutscher Apotheker Verlag, StuttgartGoogle Scholar
  26. Tanaka N, Tanaka N, Ohi-Toma T, Murata J (2007) New or noteworthy plant collections from Myanmar (2). Aponogeton lakhonensis, Cryptocoryne cruddasiana, C. crispatula var. balansae and Stichoneuron membranaceum. J Jpn Bot 82:266–273Google Scholar
  27. Watanabe K, Yahara T, Kosuge K (1999) Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae): stetistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J Plant Res 112:145–161.  https://doi.org/10.1007/PL00013869 CrossRefGoogle Scholar
  28. Xu YT, Shaw PC, Jiang RW, Hon PM, Chan YM et al (2010) Antitussive and central respiratory depressant effects of Stemona tuberosa. J Ethnopharmacol 128:679–684.  https://doi.org/10.1016/j.jep.2010.02.018 CrossRefPubMedGoogle Scholar
  29. Zarco CR (1986) A new methods for estimating karyotype asssymetry. Taxon 35:526–530.  https://doi.org/10.2307/1221906 CrossRefGoogle Scholar

Copyright information

© Society for Plant Research 2019

Authors and Affiliations

  1. 1.Cytogenetics and Plant Biotechnology Laboratory, Department of BotanyTripura University (A Central University)SuryamaninagarIndia

Personalised recommendations