Advertisement

Vegetos

pp 1–10 | Cite as

Regeneration response of carnation cultivars in response of silver nanoparticles under in vitro conditions

  • Muhammad ZiaEmail author
  • Kamran Yaqoob
  • Abdul Mannan
  • Sobia Nisa
  • Ghulam Raza
  • Riaz ur Rehman
Research Articles
  • 1 Downloads

Abstract

The purpose of this study was to analyze the effect of chemically synthesized silver nanoparticles (AgNPs) on in vitro regeneration of carnation cultivars cv. Noblessa, cv. Antigua and cv. Mariposa. Number of shoots/explant of cv. Noblesse and cv. Antigua significantly increased at 6 mg/L AgNPs (average 7.33 shoots per explant) when supplemented in MS media. While cv. Mariposa showed highest regeneration rate at 8 mg/L (average 10 shoots per explant). High concentration of AgNPs (12 mg/L) in the medium enhanced rooting response, number of roots/plant, and root length as compared with control. The fresh and dry weight of regenerated plants significantly (P < 0.05) increased at 6 mg/L. DPPH based free radical scavenging activity, total antioxidant activity and reducing power potential of regenerated plants varied depending upon concentration of AgNPs in the media. To find non-enzymatic antioxidants to combat oxidative damage, total phenolics and flavonoids were also determined in the regenerated plants. The study concludes that metallic nanoparticles has significant effect on in vitro growth of carnation cultivars however concentration dependent. Furthermore, nanoparticles can be effectively used for increased in vitro shoot multiplication and regeneration of floriculture plants.

Keywords

Carnation Silver nanoparticles In vitro Antioxidant Phenolic Flavonoid 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18:356–363CrossRefGoogle Scholar
  2. Ames BN, Shigenaga MK, Hagen TM (1995) Mitochondrial decay in aging. Biochim Biophys Acta 1271:165–170PubMedCrossRefGoogle Scholar
  3. An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci Technol 41:1100–1107CrossRefGoogle Scholar
  4. Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnol 4:634–641CrossRefGoogle Scholar
  5. Bell PF, Chaney RL, Angle JS (1991) Free metal activity and total metal concentrations as indices of micro nutrient availability to barley [(Hordeum vulgare L. Klages]. Plant Soil 130:51–62CrossRefGoogle Scholar
  6. Bernard F, Moghadam NN, Mirzajani F (2015) The effect of colloidal silver nanoparticles on the level of lignification and hyperhydricity syndrome in Thymus daenensis vitro shoots: a possible involvement of bonded polyamines. Vitro Cell Dev Biol Plant 51:546–553CrossRefGoogle Scholar
  7. Chang S-T, Wu J-H, Wang S-Y, Kang P-L, Yang N-S, Shyur L-F (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem 49:3420–3424PubMedCrossRefGoogle Scholar
  8. Choi O, Deng KK, Kim N-J, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074PubMedCrossRefPubMedCentralGoogle Scholar
  9. Chopra VL (1986) Relevance of basic research in agriculture. Indian J Genet Plant Breed 46(1):181–184Google Scholar
  10. Deb MS, Jamir N, Deb CR (2014) In vitro culture of immature embryos of Cinnamomum tamala Nees.—The role of different factors. Indian J Exp Biol 52(10):1003–1010PubMedPubMedCentralGoogle Scholar
  11. Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B Biointerfaces 98:112–119PubMedCrossRefPubMedCentralGoogle Scholar
  12. Ghosh A, Hossain MM, Sharma M (2014) Mass propagation of Cymbidium giganteum Wall. ex Lindl. using in vitro seedlings. Indian J Exp Biol 52(9):905–911PubMedPubMedCentralGoogle Scholar
  13. Hemalatha S, Lalitha P, Arulpriya P (2010) Antioxidant activities of the extracts of the aerial roots of Pothosaurea. Linden ex Andre. Der Pharma Chemica 2:84–89Google Scholar
  14. Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2009) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132PubMedCrossRefGoogle Scholar
  15. Javed R, Usman M, Tabassum S, Zia M (2016) Effect of capping agents: structural, optical and biological properties of ZnO nanoparticles. Appl Surf Sci 386:319–326CrossRefGoogle Scholar
  16. Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962PubMedCrossRefGoogle Scholar
  17. Kanner J, Frankel E, Granit R, German B, Kinsella JE (1994) Natural antioxidants in grapes and wines. J Agric Food Chem 42:64–69CrossRefGoogle Scholar
  18. Koontz HV, Berle KL (1980) Silver uptake, distribution, and effect on calcium, phosphorus, and sulfur uptake. Plant Physiol 65:336–339PubMedPubMedCentralCrossRefGoogle Scholar
  19. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Proc Biochem 47(4):651–658CrossRefGoogle Scholar
  20. Kumar V, Ramakrishna A, Ravishankar G (2007) Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr. In Vitro Cell Dev Biol Plant 43:602–607CrossRefGoogle Scholar
  21. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246PubMedCrossRefGoogle Scholar
  22. Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499PubMedCrossRefGoogle Scholar
  23. Lü P, Cao J, He S, Liu J, Li H, Cheng G, Ding Y, Joyce DC (2010) Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol Technol 57:196–202CrossRefGoogle Scholar
  24. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles ENPs and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061CrossRefGoogle Scholar
  25. Mahendra S, Zhu H, Colvin VL, Alvarez PJ (2008) Quantum dot weathering results in microbial toxicity. Environ Sci Technol 42:9424–9430PubMedCrossRefGoogle Scholar
  26. Mangal M, Sharma D, Sharma M (2014) In vitro regeneration in olive. Olea europaea L. cv, ‘Frontio’from nodal segments. Indian J Exp Biol 52(9):912–916PubMedGoogle Scholar
  27. Mather C (2008) Value chains and tropical products in a changing global trade regime. International Centre for Trade and Sustainable Development, ICTSD, GenevaCrossRefGoogle Scholar
  28. Mazumdar H, Ahmed G (2011) Synthesis of silver nanoparticles and its adverse effect on seed germinations in Oryza sativa, Vigna radiate and Brassica campestris. Int J Advbiotechnol Res 2:404–413Google Scholar
  29. McDonald S, Prenzler PD, Antolovich M, Robards K (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem 73:73–84CrossRefGoogle Scholar
  30. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497CrossRefGoogle Scholar
  31. Neumann PM (2008) Coping mechanisms for crop plants in drought-prone environments. Ann Bot 101:901–907PubMedPubMedCentralCrossRefGoogle Scholar
  32. Oktay M, Gülçin İ, Küfrevioğlu Öİ (2003) Determination of in vitro antioxidant activity of fennel. Foeniculum vulgare. seed extracts. LWT Food Sci Technol 36:263–271CrossRefGoogle Scholar
  33. Onamu R, Obukosia SD, Musembi N, Hutchinson MJ (2003) Efficacy of thidiazuron in in vitro propagation of carnation shoot tips: Influence ofdose and duration of exposure. Afr Crop Sci J 11(2):125–132CrossRefGoogle Scholar
  34. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720PubMedPubMedCentralCrossRefGoogle Scholar
  35. Pant M (2016) A minimal cost micropropagation protocol for Dianthus caryophyllus L.–a commercially significant venture. Indian J Exp Biol 54:203–211PubMedGoogle Scholar
  36. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341PubMedCrossRefGoogle Scholar
  37. Razzaq A, Ammara R, Jhanzab H, Mahmood T, Hafeez A, Hussain S (2015) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 2(1):55–58Google Scholar
  38. Rezaei F, Moaveni P, Mozafari H (2015) Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean. Glycine max L. at Shahr-e-Qods, Iran. Biol Forum 7(1):957 (Research Trend) Google Scholar
  39. Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nanosilver on growth of saffron in flooding stress. World Acad Sci Eng Technol 6:517–522Google Scholar
  40. Sack L, Holbrook NM (2006) Leaf hydraulics. Annu Rev Plant Biol 57:361–381PubMedCrossRefGoogle Scholar
  41. Sparnaaij LD, Koehorst HJJ, Segers TA (1990) The inheritance of premature flowering in regenerants from carnation ovaries. In: Integration of in vitro techniques in ornamental plant breeding. Proceedings, symposium. EUCARPIA, pp 68–73Google Scholar
  42. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefGoogle Scholar
  43. Stone V, Johnston H, Clift MJ (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobiosci 6:331–340CrossRefGoogle Scholar
  44. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45:2360–2367PubMedCrossRefPubMedCentralGoogle Scholar
  45. Zafar H, Ali A, Zia M (2017) CuO nanoparticles inhibited root growth from Brassica nigra seedlings but induced root from stem and leaf explants. Appl Biochem Biotechnol 181(1):365–378PubMedCrossRefPubMedCentralGoogle Scholar
  46. Zia M, Gul S, Akhtar J, Ul Haq I, Abbasi BH, Hussain A et al (2016) Green synthesis of silver nanoparticles fromgrape and tomato juices and evaluation of biological activities. IET nanobiotechnol 11(2):193–199CrossRefGoogle Scholar

Copyright information

© Society for Plant Research 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of Floriculture and HorticultureGovernment of PunjabLahorePakistan
  3. 3.Department of PharmacyCOMSATS UniversityAbbotabadPakistan
  4. 4.Department of MicrobiologyUniversity of HaripurHaripurPakistan
  5. 5.Division of Plant BiotechnologyNIBGEFaisalabadPakistan

Personalised recommendations