Advertisement

Gram–Charlier-Like Expansions of the Convoluted Hyperbolic-Secant Density

  • Federica Nicolussi
  • Maria Grazia ZoiaEmail author
Original Article
  • 3 Downloads

Abstract

Since financial series are usually heavy tailed and skewed, research has formerly considered well-known leptokurtic distributions to model these series and, recently, has focused on the technique of adjusting the moments of a probability law by using its orthogonal polynomials. This paper combines these approaches by modifying the moments of the convoluted hyperbolic secant. The resulting density is a Gram–Charlier-like (GC-like) expansion capable to account for skewness and excess kurtosis. Multivariate extensions of these expansions are obtained on an argument using spherical distributions. Both the univariate and multivariate (GC-like) expansions prove to be effective in modeling heavy-tailed series and computing risk measures.

Keywords

Convoluted hyperbolic-secant distribution Orthogonal polynomials Kurtosis Skewness Gram–Charlier-like expansion 

Notes

References

  1. 1.
    Adcock CJ, Shutes K (2012) On the multivariate extended skew-normal, normal-exponential, and normal-gamma distributions. J Stat Theory Pract 6–4:636–664MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barakat MH (2015) A new method for adding two parameters to a family of distributions with applications to the normal and exponential families. Stat Methods Appl 24(3):359–372MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barndorff-Nielsen O, Blæsild P (1983) Hyperbolic distributions. In: Johnson NL, Kotz S, Read CB (eds) Encyclopedia of statistical sciences, vol 3. Wiley, New YorkGoogle Scholar
  4. 4.
    Baten WD (1934) The probability law for the sum of n independent variables, each subject to the law ((1/2h)sech(πx/(2h))). Bull Am Math Soc 40:284–290MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bingham NH, Kiesel R (2002) Semi-parametric modelling in finance: theoretical foundations. Quant Finance 2(4):241–250MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bracewell RN (1986) The Fourier transform and its application. Mc Graw Hill, New YorkzbMATHGoogle Scholar
  7. 7.
    Bronshtein IN, Semendyayev KA, Musiol G, Muhlig H (1998) Handbook of mathematics. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Carreau J, Bengio Y (2009) A hybrid Pareto model for asymmetric fat-tailed data: the univariate case. Extremes 12:53–76.  https://doi.org/10.1007/s10687-008-0068-0 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Carreau JP, Naveau P, Sauquet E (2009) A statistical rainfall-runoff mixture model with heavy-tailed components. Water Resour Res 45:W10437.  https://doi.org/10.1029/2009WR007880 CrossRefGoogle Scholar
  10. 10.
    Carreau J, Vrac M (2011) Stochastic down scaling of precipitation with neural network conditional mixture models. Water Resour Res 47:W10502.  https://doi.org/10.1029/2010WR010128 CrossRefGoogle Scholar
  11. 11.
    Cheah PK, Fraser DAS, Reid N (1993) Some alternatives to Edgeworth. Can J Stat 21(II):131–138MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chihara TS (1978) An introduction to orthogonal polynomials. Gordon & Breach, New YorkzbMATHGoogle Scholar
  13. 13.
    Cooley D, Nychka D, Nevada P (2007) Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc 102(479):824–840MathSciNetCrossRefGoogle Scholar
  14. 14.
    Faliva M, Poti’ V, Zoia MG (2016) Orthogonal polynomials for tailoring density functions to excess kurtosis, asymmetry and dependence. Commun Stat Theory Methods 45:49–62MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fang KT, Kotz S, Ng KW (1990) Symmetric multivariate and related distributions. Chapman and Hall, LondonCrossRefGoogle Scholar
  16. 16.
    Fernandez C, Steel MF (1998) On Bayesian modeling of fat tails and skewness. J Am Stat Assoc 93:359–371MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fisher MJ (2013) Generalized hyperbolic secant distribution with application to finance. Springer, BerlinGoogle Scholar
  18. 18.
    Frigessi A, Haug O, Rue H (2002) A dynamic mixture for unsupervised tail estimation without threshold selection. Extremes 5:219–235MathSciNetCrossRefGoogle Scholar
  19. 19.
    Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions. Wiley, New YorkzbMATHGoogle Scholar
  20. 20.
    García CB, van García Perez J, Dorp JR (2011) Modelling heavy-tailed, skewed and peaked uncertainty phenomena with bounded support. Stat Methods Appl 20:463–486MathSciNetCrossRefGoogle Scholar
  21. 21.
    Genton MG (2004) Skew-symmetric and generalized skew-elliptical distributions. In: Genton MG (ed) Skew-elliptical distributions and their applications. Chapman and Hall, London, pp 101–120CrossRefGoogle Scholar
  22. 22.
    Gomez E, Gomez-Villegas MA, Marin JM (2003) A survey on continuous elliptical vector distributions. Rev Mat Complut 16(1):345–361MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gradshteyn IS, Ryzhik IM (1980) Table of integrals, series and products. Academic Press, LondonzbMATHGoogle Scholar
  24. 24.
    Handcock MS (2014) Relative distribution methods. Version 1.6-3. Project home page at http://www.stat.ucla.edu/~handcock/RelD ist http://CRAN.R-project.org/package=reldist
  25. 25.
    Hayfield T, Racine JS (2008) Nonparametric econometrics: the np package. J Stat Softw 27(5):1–32CrossRefGoogle Scholar
  26. 26.
    Jondeau E, Rockinger M (2001) Gram–Charlier densities. J Econ Dyn Control 25(10):1457–1483CrossRefGoogle Scholar
  27. 27.
    Kandem JS (2005) Value at risk and expected shortfall for linear portfolios with elliptically distributed risk factors. J Theor Appl Finance 8:537–551MathSciNetCrossRefGoogle Scholar
  28. 28.
    Katz R, Parlange M, Naveau P (2002) Extremes in hydrology. Adv Water Resour 25:1287–1304CrossRefGoogle Scholar
  29. 29.
    Kelker D (1970) Distribution theory of spherical distributions and a location-scale parameter generalization. \(Sankhy\bar{a}\). Indian J Stat Series A:419–430MathSciNetzbMATHGoogle Scholar
  30. 30.
    Landsman Z, Valdez AE (2004) Tail conditional expectations for elliptical distributions. N Am Actuar J 8(3):118–122MathSciNetCrossRefGoogle Scholar
  31. 31.
    Li C, Singh VP, Mishra AK (2012) Simulation of the entire range of daily precipitation using a hybrid probability distribution. Water Resour Res 48:W03521.  https://doi.org/10.1029/2011WR011446 CrossRefGoogle Scholar
  32. 32.
    Lutkepohl H (1996) Handbook of matrices. Wiley, HobokenzbMATHGoogle Scholar
  33. 33.
    MacDonald A, Scarrot, Lee D, Darlow B, Reale M, Russel G (2011) A flexible extreme value mixture model. Comput Stat Data Anal 55:2137–2157MathSciNetCrossRefGoogle Scholar
  34. 34.
    Maasoumi E, Racine J (2002) Entropy and predictability of stock market returns. J Econom 107(1):291–312MathSciNetCrossRefGoogle Scholar
  35. 35.
    Mills TC (1999) The econometric modelling of financial time series. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  36. 36.
    Naveau P, Toreti I, Xoplaki E (2014) A fast nonparametric spatio-temporal regression scheme for generalized Pareto distributed heavy precipitation. Water Resour Res 50:4011–4017.  https://doi.org/10.1002/2014WR015431 CrossRefGoogle Scholar
  37. 37.
    Papastahopoulos I, Tawn AJ (2013) Extended generalized Pareto models for tails estimation. J Stat Plan Inference 143:131–143CrossRefGoogle Scholar
  38. 38.
    Philippe J (2001) Value at risk: the new benchmark for managing financial risk. McGraw-Hill Professional, New YorkGoogle Scholar
  39. 39.
    Rachev ST, Hoechstoetter M, Fabozzi FJ (2010) Probability and statistics for finance. Wiley, New YorkCrossRefGoogle Scholar
  40. 40.
    Ruppert D, Wand MP (1992) Correcting for kurtosis in density estimation. Aust N Z J Stat 34(I):19–29MathSciNetCrossRefGoogle Scholar
  41. 41.
    Szego G (1967) Orthogonal polynomials. American Mathematical Society Colloquium Publications, vol. 23, American Mathematical Society, New York, 1939, 3rd ednGoogle Scholar
  42. 42.
    Szego G (2004) Risk measures for the 21 century. Wiley, New YorkGoogle Scholar
  43. 43.
    Zoia M (2010) Tailoring the Gaussian law for excess kurtosis and asymmetry by Hermite polynomials. Commun Stat Theory Methods 39:52–64CrossRefGoogle Scholar

Copyright information

© Grace Scientific Publishing 2020

Authors and Affiliations

  1. 1.Department of Economics, Management and Quantitative MethodsUniversità degli Studi di MilanoMilanItaly
  2. 2.Department of Economic PolicyUniversità Cattolica del Sacro CuoreMilanItaly

Personalised recommendations