Advertisement

Envelopes of Spacecraft Trajectories with a Single Impulse

  • Andrea CarusoEmail author
  • Lorenzo Niccolai
  • Alessandro A. Quarta
  • Giovanni Mengali
Original article
  • 8 Downloads

Abstract

This paper analyzes reachable domains of spacecraft using a single impulsive maneuver. In particular, compact expressions are obtained of the envelopes of spacecraft trajectories in closed form, in both cases of either radial or tangential impulse. Suitable bounds are enforced on the magnitude of the velocity variation to obtain an elliptic transfer trajectory after the maneuver with a pericenter radius greater than the primary body’s radius. Three different cases are investigated: (1) the impulse point is fixed and the velocity variation may be varied; (2) a fixed impulse magnitude and free maneuver point; (3) both free impulse point and magnitude. Finally, some mission scenarios are analyzed to show the effectiveness of the proposed analytical method.

Keywords

Impulsive maneuver Reachable domain Trajectory envelopes Radial impulse Tangential impulse 

Nomenclature

A, B

Auxiliary variables, see Eq. (12)

e

Eccentricity

h

Angular momentum, [\(\mathrm{km}^2/\mathrm{s}\)]

O

Primary’s center of mass

p

Semilatus rectum, [\(\,\hbox {km}\)]

r

Primary-spacecraft distance, [\(\,\hbox {km}\)]

v

Spacecraft orbital velocity, [\(\,\hbox {km/s}\)]

\(\varDelta u\)

Radial velocity variation, [\(\,\hbox {km/s}\)]

\(\varDelta v\)

Tangential velocity variation, [\(\,\hbox {km/s}\)]

\(\alpha\)

Auxiliary variable, see Eq. (13)

\(\theta\)

Polar angle, [\(\,\hbox {rad}\)]

\(\mu\)

Primary’s gravitational parameter, [\(\hbox { km}^3/\hbox {s}^2\)]

\(\nu _m\)

True anomaly at maneuver point, [\(\,\hbox {rad}\)]

\(\xi\)

Auxiliary variable, see Eq. (6)

Subscripts

0

Value just before the maneuver

1

Value just after the maneuver

\(\max\)

Maximum allowable value

\(\min\)

Minimum allowable value

Notes

Acknowledgements

This work is partly supported by the University of Pisa, Progetti di Ricerca di Ateneo (Grant no. PRA_2018_44).

Compliance with ethical standards

Conflict of interest statement

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Vasile, M., De Pascale, P.: Preliminary design of multiple gravity-assist trajectories. J. Spacecr. Rocket. 43(4), 794–805 (2006).  https://doi.org/10.2514/1.17413 CrossRefGoogle Scholar
  2. 2.
    Quarta, A.A., Mengali, G.: Simple solution to optimal cotangential transfer between coplanar elliptic orbits. Acta. Astronaut. 155, 247–254 (2019).  https://doi.org/10.1016/j.actaastro.2018.12.007 CrossRefGoogle Scholar
  3. 3.
    Caruso, A., Quarta, A.A., Mengali, G.: Optimal transfer between elliptic orbits with three tangential impulses. Adv. Space Res. 64(4), 861–873 (2019).  https://doi.org/10.1016/j.asr.2019.05.037 CrossRefGoogle Scholar
  4. 4.
    Sanatifar, M., Capuzzo-Dolcetta, R.: Search-based method optimization applied to bi-impulsive orbital transfer. Acta Astronaut. 161, 389–404 (2019).  https://doi.org/10.1016/j.actaastro.2019.03.015 CrossRefGoogle Scholar
  5. 5.
    Vinh, N.X., Gilbert, E.G., Howe, R.M., Sheu, D., Lu, P.: Reachable domain for interception at hyperbolic speeds. Acta Astronaut. 35(1), 1–8 (1995).  https://doi.org/10.1016/0094-5765(94)00132-6 CrossRefGoogle Scholar
  6. 6.
    Chen, Q., Qiao, D., Shang, H., Liu, X.: A new method for solving reachable domain of spacecraft with a single impulse. Acta Astronaut. 145, 153–164 (2018).  https://doi.org/10.1016/j.actaastro.2018.01.040 CrossRefGoogle Scholar
  7. 7.
    Beckner, F.L.: Regions accessible to a ballistic weapon. In: Proceedings of the fifth AFBMD/STL aerospace symposium, Vol. III, New York, pp. 317–366 (1960)Google Scholar
  8. 8.
    Xue, D., Li, J., Baoyin, H., Jiang, F.: Reachable domain for spacecraft with a single impulse. J. Guid. Control Dyn. 33(3), 934–942 (2010).  https://doi.org/10.2514/1.43963 CrossRefGoogle Scholar
  9. 9.
    Wen, C., Zhao, Y., Shi, P.: Precise determination of reachable domain for spacecraft with single impulse. J. Guid. Control Dyn. 37(6), 1767–1779 (2014).  https://doi.org/10.2514/1.G000583 CrossRefGoogle Scholar
  10. 10.
    Duan, J., Liu, Y., Ding, R.: Simple method to determine reachable domain of spacecraft with a single impulse. J. Guid. Control Dyn. 42(1), 168–174 (2019).  https://doi.org/10.2514/1.G003273 CrossRefGoogle Scholar
  11. 11.
    Wen, C., Gurfil, P.: Relative reachable domain for spacecraft with initial state uncertainties. J. Guid. Control Dyn. 39(3), 462–473 (2016).  https://doi.org/10.2514/1.G000721 CrossRefGoogle Scholar
  12. 12.
    Zhang, G., Cao, X., Ma, G.: Reachable domain of spacecraft with a single tangent impulse considering trajectory safety. Acta Astronaut. 91, 228–236 (2013).  https://doi.org/10.1016/j.actaastro.2013.06.016 CrossRefGoogle Scholar
  13. 13.
    Quarta, A.A., Mengali, G.: Linear systems approach to multiple-impulse trajectory analysis via regularization. J. Guid. Control Dyn. 33(5), 1679–1683 (2010).  https://doi.org/10.2514/1.50133 CrossRefGoogle Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2019

Authors and Affiliations

  • Andrea Caruso
    • 1
    Email author
  • Lorenzo Niccolai
    • 1
  • Alessandro A. Quarta
    • 1
  • Giovanni Mengali
    • 1
  1. 1.University of PisaPisaItaly

Personalised recommendations