X-Ritz Solution for Nonlinear Free Vibrations of Plates with Embedded Cracks

  • Ivano Benedetti
  • Vincenzo Gulizzi
  • Alberto MilazzoEmail author
Original Article


The analysis of large amplitude vibrations of cracked plates is considered in this study. The problem is addressed via a Ritz approach based on the first-order shear deformation theory and von Kármán’s geometric nonlinearity assumptions. The trial functions are built as series of regular orthogonal polynomial products supplemented with special functions able to represent the crack behaviour (which motivates why the method is dubbed as eXtended Ritz); boundary functions are used to guarantee the fulfillment of the kinematic boundary conditions along the plate edges. Convergence and accuracy are assessed to validate the approach and show its efficiency and potential. Original results are then presented, which illustrate the influence of cracks on the stiffening effect of large amplitude vibrations. These results can also serve as benchmark for future solutions of the problem.


Large amplitude vibrations Plates Ritz method 

Supplementary material


  1. 1.
    Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bachene, M., Tiberkak, R., Rechak, S.: Vibration analysis of cracked plates using the extended finite element method. Arch. Appl. Mech. 79(3), 249–262 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bose, T., Mohanty, A.: Vibration analysis of a rectangular thin isotropic plate with a part-through surface crack of arbitrary orientation and position. J. Sound Vib. 332(26), 7123–7141 (2013)CrossRefGoogle Scholar
  4. 4.
    Bose, T., Mohanty, A.: Large amplitude axisymmetric vibration of a circular plate having a circumferential crack. Int. J. Mech. Sci. 124–125, 194–202 (2017)CrossRefGoogle Scholar
  5. 5.
    Chu, H., Hermann, G.: Influence of large amplitude on free flexural vibrations of rectangular elastic plates. J. Appl. Mech. 23, 532–540 (1956)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ganapathi, M., Varadan, T., Sarma, B.: Nonlinear flexural vibrations of laminated orthotropic plates. Comput. Struct. 39(6), 685–688 (1991)CrossRefGoogle Scholar
  7. 7.
    Guan-Liang, Q., Song-Nian, G., Jie-Sheng, J.: A finite element model of cracked plates and application to vibration problems. Comput. Struct. 39(5), 483–487 (1991)CrossRefGoogle Scholar
  8. 8.
    Han, W., Petyt, M.: Geometrically nonlinear vibration analysis of thin, rectangular plates using the hierarchical finite element method—ii: 1st mode of laminated plates and higher modes of isotropic and laminated plates. Comput. Struct. 63(2), 309–318 (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Huang, C., Leissa, A., Chan, C.: Vibrations of rectangular plates with internal cracks or slits. Int. J. Mech. Sci. 53(6), 436–445 (2011)CrossRefGoogle Scholar
  10. 10.
    Huang, C., Leissa, A., Li, R.: Accurate vibration analysis of thick, cracked rectangular plates. J. Sound Vib. 330(9), 2079–2093 (2011)CrossRefGoogle Scholar
  11. 11.
    Huang, C., Lin, Y.: Fourier series solutions for vibrations of a rectangular plate with a straight through crack. Appl. Math. Model. 40(23), 10389–10403 (2016)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Huang, C.S., Lee, M.C., Chang, M.J.: Vibration and buckling analysis of internally cracked square plates by the MLS-Ritz approach. Int. J. Struct. Stab. Dyn. 18(09), 1850105 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ismail, R., Cartmell, M.: An investigation into the vibration analysis of a plate with a surface crack of variable angular orientation. J. Sound Vib. 331(12), 2929–2948 (2012)CrossRefGoogle Scholar
  14. 14.
    Krawczuk, M.: Natural vibrations of rectangular plates with a through crack. Arch. Appl. Mech. 63(7), 491–504 (1993)zbMATHGoogle Scholar
  15. 15.
    Lei, Z., Zhang, L., Liew, K.: Modeling large amplitude vibration of matrix cracked hybrid laminated plates containing CNTR-FG layers. Appl. Math. Model. 55, 33–48 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Leissa, A.W.: Vibration of Plates. Acoustical Society of America, New York (1993)Google Scholar
  17. 17.
    Liew, K., Hung, K., Lim, M.: A solution method for analysis of cracked plates under vibration. Eng. Fract. Mech. 48(3), 393–404 (1994)CrossRefGoogle Scholar
  18. 18.
    Liew, K., Xiang, Y., Kitipornchai, S.: Research on thick plate vibration: a literature survey. J. Sound Vib. 180(1), 163–176 (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    Milazzo, A., Benedetti, I., Gulizzi, V.: An extended ritz formulation for buckling and post-buckling analysis of cracked multilayered plates. Composite Struct. 201, 980–994 (2018)CrossRefGoogle Scholar
  20. 20.
    Milazzo, A., Benedetti, I., Gulizzi, V.: A single-domain ritz approach for buckling and post-buckling analysis of cracked plates. Int. J. Solids Struct. 159, 221–231 (2019)CrossRefGoogle Scholar
  21. 21.
    Milazzo, A., Oliveri, V.: Post-buckling analysis of cracked multilayered composite plates by pb-2 Rayleigh–Ritz method. Composite Struct. 132, 75–86 (2015)CrossRefGoogle Scholar
  22. 22.
    Murthy, M.V.V., Raju, K.N., Viswanath, S.: On the bending stress distribution at the tip of a stationary crack from reissner’s theory. Int. J. Fract. 17(6), 537–552 (1981)CrossRefzbMATHGoogle Scholar
  23. 23.
    Raju, K., Hinton, E.: Nonlinear vibrations of thick plates using mindlin plate elements. Int. J. Numer. Methods Eng. 15(2), 249–257 (1980)CrossRefzbMATHGoogle Scholar
  24. 24.
    Reddy, J.: Theory and analysis of elastic plates and shells. CRC Press, Boca Raton (2006)Google Scholar
  25. 25.
    Ribeiro, P.: Non-linear free periodic vibrations of variable stiffness composite laminated plates. Nonlinear Dyn. 70(2), 1535–1548 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sathyamoorthy, M.: Nonlinear vibration analysis of plates: a review and survey of current developments. Appl. Mech. Rev. 40, 1553 (1987)CrossRefGoogle Scholar
  27. 27.
    Solecki, R.: Bending vibration of a simply supported rectangular plate with a crack parallel to one edge. Eng. Fract. Mech. 18(6), 1111–1118 (1983)CrossRefGoogle Scholar
  28. 28.
    Stahl, B., Keer, L.: Vibration and stability of cracked rectangular plates. Int. J. Solids Struct. 8(1), 69–91 (1972)CrossRefzbMATHGoogle Scholar
  29. 29.
    Su, R., Leung, A., Wong, S.: Vibration of cracked kirchhoff’s plates. Key Eng. Mater. 145–149, 167–172 (1998)Google Scholar
  30. 30.
    Swain, P., Adhikari, B., Dash, P.: A higher-order polynomial shear deformation theory for geometrically nonlinear free vibration response of laminated composite plate. Mech. Adv. Mater. Struct. (2017). Article in Press
  31. 31.
    Viola, E., Tornabene, F., Fantuzzi, N.: Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape. Composite Struct. 106, 815–834 (2013)CrossRefGoogle Scholar
  32. 32.
    Yuan, J., Dickinson, S.: The flexural vibration of rectangular plate systems approached by using artificial springs in the Rayleigh–Ritz method. J. Sound Vib. 159(1), 39–55 (1992)CrossRefzbMATHGoogle Scholar
  33. 33.
    Zehnder, A.T., Potdar, Y.K.: Williams meets von karman: mode coupling and nonlinearity in the fracture of thin plates. Int. J. Fract. 93(1), 409 (1998)Google Scholar
  34. 34.
    Zehnder, A.T., Viz, M.J.: Fracture mechanics of thin plates and shells under combined membrane, bending, and twisting loads. Appl. Mech. Rev. 58(1), 37–48 (2005)CrossRefGoogle Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2019

Authors and Affiliations

  1. 1.Department of EngineeringUniversity of PalermoPalermoItaly

Personalised recommendations