Advertisement

Spatio-Temporal Analysis of Road Accident Incidents and Delineation of Hotspots Using Geospatial Tools in Thrissur District, Kerala, India

  • Ashokan Laila AchuEmail author
  • C. D. Aju
  • Vipin Suresh
  • Thushara P. Manoharan
  • Rajesh Reghunath
Article
  • 22 Downloads

Abstract

Accidents are distressing experiences which affect physical, psychological, and social welfare of clans. Road accident fatalities are increasing in Kerala due to the traffic congestions and increase in both population and number of vehicles. The present study investigates the spatial and temporal patterns of the road accidents from 2013 to 2015 in Thrissur district, Kerala using geospatial technology. Assessment of spatio-temporal clustering of road accidents was carried out using Moran’s I method of spatial autocorrelation, Getis-Ord Gi* hotspot analysis, and Kernel density functions. The year wise total accidents show a clustered pattern, whereas the spatio-temporal breakup of events shows random and clustered distribution in certain classes. The continuous road stretches and isolated zones of hotspots and cold spots were delineated by the Kernel density surface using the results of Getis-Ord Gi* hotspots analysis. Four major road segments such as National highway near Kodungallur to Althara stretch, Thrissur town to Perumpilav stretch via Kunnamangalam, Thrissur town to Vadanappally segment, and Guruvayur to kunnamangalam stretch are identified as highly clustered accident hotspots. The results of this study can be effectively used by local self-governments, police departments, as well as national agencies for implementing better road safety policies in the accident hotspots stretches.

Keywords

Spatial autocorrelation Road accident hotspots Spatio-temporal clustering Getis-Ord Gi* Moran’s I Kernel density functions 

Spatio - zeitliche Analyse von Verkehrsunfallereignissen und Zeichnung von Hotspots mit Georaumwerkzeugen im Bezirk Trissur, Kerala, Indien

Zusammenfassung

Unfälle sind schmerzliche Erfahrungen, die physische, psychologische und soziale Konsequenzen haben können. Fatale Straßenunfälle steigen aktuell in Kerala, bedingt durch Verkehrsstau und steigenden Zahlen der Bevölkerung und Fahrzeugen. Die vorliegende Studie untersucht räumliche und zeitliche Muster von Straßenunfällen zwischen 2013 und 2015 im Distrikt Thrissur im (südindischen) Bundesstaat Kerala. Basierend auf räumlichen Autokorrelationsmethoden nach Moran’s I (Getis-Ord Gi* Hotspot-Analyse und Kernel-Density-Funktionen) werden raumzeitliche Cluster von Straßenverkehrsunfällen ermittelt. Die jahresweisen Anzahlen an Unfällen zeigen geclusterte Muster, wohingegen die raumzeitliche Ereignisaufteilung sowohl zufällige als auch geclusterte Verteilungen hinsichtlich bestimmter Klassen ergibt. Ununterbrochene Straßenverläufe und isolierte Zonen an Hotspots und ‚Coldspots‘ werden basierend auf Kernel-Density-Analysen dargestellt. Insgesamt wurden vier Hauptstraßensegmente als Hotspots für Verkehrsunfälle identifiziert. Die Ergebnisse dieser Studie können effektiv in kommunalen Selbstverwaltungen, Polzeidirektionen und staatlichen Sicherheitsbehörden eingesetzt werden.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Achu AL, Rose RS (2016) GIS Analysis of Crime Incidence and Spatial Variation in Thiruvananthapuram City. J Remot App 6:1–7Google Scholar
  2. Aghajani MA, Dezfoulian RS, Arjroody AR, Rezaei M (2017) Applying GIS to identify the spatial and temporal patterns of road accidents using spatial statistics (case study: Ilam Province, Iran). Transp Res Procedia 25:2126–2138CrossRefGoogle Scholar
  3. Anderson TK (2009) Kernel density estimation and K-means clustering to profile road accident hotspots. Accid Anal Prev 41(3):359–364.  https://doi.org/10.1016/j.aap.2008.12.014 CrossRefGoogle Scholar
  4. Bailey TC, Gatrell AC (1995) Interactive spatial data analysis (413). Longman Sci Tech, EssexGoogle Scholar
  5. Bíl M, Andrášik R, Sedoník J (2019) A detailed spatiotemporal analysis of traffic crash hotspots. Appl Geogr 107:82–90.  https://doi.org/10.1016/j.apgeog.2019.04.008 CrossRefGoogle Scholar
  6. Bornmann L, de Moya Angeon F (2019) Hot and cold spots in the US research: a spatial analysis of bibliometric data on the institutional level. J Inf Sci 45(1):84–91.  https://doi.org/10.1177/0165551518782829 CrossRefGoogle Scholar
  7. Census of India (2011) District census handbook Thrissur: village and town wise Primary Census abstract (PCA) Directorate of Census Operations Kerala, series-33 part XII-BGoogle Scholar
  8. Chen CW, Lee CC, Tseng CP, Chen CH (2013) Application of GIS for the determination of hazard hotspots after direct transportation linkages between Taiwan and China. Nat Hazards 66(2):191–228.  https://doi.org/10.1007/s11069-012-0402-3 CrossRefGoogle Scholar
  9. Choudhary J, Ohri A, Kumar B (2015) Spatial and statistical analysis of road accidents hotspots using GIS. In: Third conference of transportation research group of India, pp 1−12Google Scholar
  10. Dai D, Jaworski D (2016) Influence of built environment on pedestrian crashes: a network-based GIS analysis. Appl Geogr 73:53–61.  https://doi.org/10.1016/j.apgeog.2016.06.005 CrossRefGoogle Scholar
  11. De Silva V, Tharindra H, Vissoci JRN, Andrade L, Mallawaarachchi BC, Østbye T, Staton CA (2018) Road traffic crashes and built environment analysis of crash hotspots based on local police data in Galle, Sri Lanka. Int J Inj Control Saf Promot 25(3):311–318.  https://doi.org/10.1080/17457300.2018.1431932 CrossRefGoogle Scholar
  12. DeGroote JP, Sugumaran R, Brend SM, Tucker BJ, Bartholomay LC (2008) Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa, USA. Int J Health Geogr 7(1):19.  https://doi.org/10.1186/1476-072X-7-19 CrossRefGoogle Scholar
  13. Dominguez RL, Cherry CB, Estevez-Ordonez D, Mera R, Escamilla V, Pawlita M, Waterboer T, Wilson KT, Peek RM, Tavera G, Williams SM (2019) Geospatial analyses identify regional hotspots of diffuse gastric cancer in rural Central America. BMC Cancer 19(1):545.  https://doi.org/10.1186/s12885-019-5726-x CrossRefGoogle Scholar
  14. Erdogan S, Yilmaz I, Baybura T, Gullu M (2008) Geographical information systems aided traffic accident analysis system case study: city of Afyonkarahisar. Accid Anal Prev 40(1):174–181.  https://doi.org/10.1016/j.aap.2007.05.004 CrossRefGoogle Scholar
  15. Fotheringham AS, Brunsdon C, Charlton M (2000) Quantitative geography: perspectives on spatial data analysis. Sage, CaliforniaGoogle Scholar
  16. Getis A, Aldstadt J (2004) Constructing the spatial weights matrix using a local statistic. Geogr Anal 36(2):90–104CrossRefGoogle Scholar
  17. Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24CrossRefGoogle Scholar
  18. GoI (2017) Report on road accidents in India, ministry of road transport and highways, government of IndiaGoogle Scholar
  19. Griffith DA (2013) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science & Business Media, BerlinGoogle Scholar
  20. Gundogdu IB (2010) Applying linear analysis methods to GIS-supported procedures for preventing traffic accidents: case study of Konya. Saf Sci 48(6):763–769.  https://doi.org/10.1016/j.ssci.2010.02.016 CrossRefGoogle Scholar
  21. IRF International Road Federation (2018) World road statistics. International Road Federation, WashingtonGoogle Scholar
  22. Jayan KD, Ganeshkumar B (2010) Identification of Accident Hotspots: AGIS Based Implementation for Kannur District, Kerala. Int J Geo Geosci 1(1):51–59Google Scholar
  23. Kim K, Yamashita EY (2007) Using a k-means clustering algorithm to examine patterns of pedestrian involved crashes in Honolulu, Hawaii. J Adv Transp 41(1):69–89CrossRefGoogle Scholar
  24. Liang LY, Ma’soem DM, Hua LT (2005) Traffic accident application using geographic information system. J East Asia Soc Transp Stud 6:3574–3589Google Scholar
  25. Maher MJ, Mountain LJ (1988) The identification of accident blackspots: a comparison of current methods. Accid Anal Prev 20(2):143–151.  https://doi.org/10.1016/0001-4575(88)90031-0 CrossRefGoogle Scholar
  26. Mitchell A (2005) The ESRI guide to GIS analysis: volume 2: spatial measurements & statistics, vol 2. ESRI press, RedlandsGoogle Scholar
  27. Mohaymany AS, Shahri M, Mirbagheri B (2013) GIS-based method for detecting high-crash-risk road segments using network kernel density estimation. Geo Spat Inf Sci 16(2):113–119.  https://doi.org/10.1080/10095020.2013.766396 CrossRefGoogle Scholar
  28. Moran PA (1948) The interpretation of statistical maps. J Royal Stat Soc Series B (Methodological) 10(2):243–251CrossRefGoogle Scholar
  29. Moran PA (1950) Notes on continuous stochastic phenomena. Biometrika 37(1/2):17–23CrossRefGoogle Scholar
  30. Okabe A, Okunuki KI, Shiode S (2006) SANET: a toolbox for spatial analysis on a network. Geogr Anal 38(1):57–66.  https://doi.org/10.1111/j.0016-7363.2005.00674.x CrossRefGoogle Scholar
  31. Okabe A, Satoh T, Sugihara K (2009) A kernel density estimation method for networks, its computational method and a GIS-based tool. Int J Geogr Inf Sci 23(1):7–32.  https://doi.org/10.1080/13658810802475491 CrossRefGoogle Scholar
  32. Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27(4):286–306CrossRefGoogle Scholar
  33. Ouni F, Belloumi M (2019) Pattern of road traffic crash hot zones versus probable hot zones in Tunisia: a geospatial analysis. Accid Anal Prev 128:185–196.  https://doi.org/10.1016/j.aap.2019.04.008 CrossRefGoogle Scholar
  34. Prasannakumar V, Vijith H, Charutha R, Geetha N (2011) Spatio-temporal clustering of road accidents: GIS based analysis and assessment. Procedia Soc Behav Sci 21:317–325CrossRefGoogle Scholar
  35. Rahman MK, Crawford T, Schmidlin TW (2018) Spatio-temporal analysis of road traffic accident fatality in Bangladesh integrating newspaper accounts and gridded population data. GeoJournal 83(4):645–661.  https://doi.org/10.1007/s10708-017-9791-x CrossRefGoogle Scholar
  36. Randall TA, Churchill CJ, Baetz BW (2005) Geographic information system (GIS) based decision support for neighbourhood traffic calming. Can J Civ Eng 32(1):86–98.  https://doi.org/10.1139/L04-085 CrossRefGoogle Scholar
  37. Ruikar M (2013) National statistics of road traffic accidents in India. J Orthop Traumatol Rehabil 6(1):1.  https://doi.org/10.4103/0975-7341.118718 CrossRefGoogle Scholar
  38. Schuurman N, Cinnamon J, Crooks VA, Hameed SM (2009) Pedestrian injury and the built environment: an environmental scan of hotspots. BMC Public Health 9(1):233CrossRefGoogle Scholar
  39. Shafabakhsh GA, Famili A, Bahadori MS (2017) GIS-based spatial analysis of urban traffic accidents: case study in Mashhad. Iran J traffic trans engi (English edition) 4(3):290–299.  https://doi.org/10.1016/j.jtte.2017.05.005 CrossRefGoogle Scholar
  40. Thakali L, Kwon TJ, Fu L (2015) Identification of crash hotspots using kernel density estimation and kriging methods: a comparison. J Mod Transp 23(2):93–106.  https://doi.org/10.1007/s40534-015-0068-0 CrossRefGoogle Scholar
  41. WHO World Health Organization (2018) Global status report on road safety 2018 https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-eng.pdf. Accessed 20 June 2019
  42. Xie Z, Yan J (2008) Kernel density estimation of traffic accidents in a network space. Comput Environ Urban Syst 32(5):396–406.  https://doi.org/10.1016/j.compenvurbsys.2008.05.001 CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Kartographie e.V. 2019

Authors and Affiliations

  1. 1.International and Inter University Centre for Natural Resources ManagementUniversity of KeralaThiruvananthapuramIndia
  2. 2.Department of GeologyUniversity of KeralaThiruvananthapuramIndia
  3. 3.Inter University Centre for Geospatial Information Science and TechnologyUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations