Analysis of Seasonal Precipitation, Potential Evapotranspiration, Aridity, Future Precipitation Anomaly and Major Crops at District Level of India

  • Laxmi Goparaju
  • Firoz AhmadEmail author


Climate-induced risks are very significant in these days and will impact the agriculture crop production because of the change in hydro-climatic condition. Remote sensing and GIS framework provide scientific understanding in practical application systems with the sustainable solution in new climate change reality and support significantly in resilience to mitigate the future risk. The paper deals with long-term (1970–2000) monthly thematic datasets and analyzed the seasonal (kharif, rabi and zaid) pattern of precipitation, potential evapotranspiration and aridity index to scale of district level of India. Additionally, we have used the predicted (2025) monthly precipitation anomalies data (climate change scenario) to examine the seasonal precipitation pattern at the district level of India. The major agriculture crops (rice, wheat, and maize) for the year 2005 were also evaluated during those seasons. Such analysis gives better understanding and knowledge of district-wise seasonal spatial pattern at country level (India) of climate stress, crop water demand and suitably applied to make strategies/ synergic approach toward agriculture resilience. The long-term seasonal aridity index pattern analysis varies significantly throughout India during kharif, rabi and zaid seasons which were manifested by cropping pattern adopted by farmers as per land potentiality. Several districts in some of the states of India receive adequate precipitation during kharif season and manifest low aridity index in rabi and zaid season which can be recommended for rainwater conservation at the watershed level to boost the agriculture crop production. Farmer’s suicide hot spot districts in the arid and semiarid regions need policy intervention to develop a concrete plan including integrated watershed management strategies with traditional ecological knowledge for long-term sustainable management for climate resilience because these districts showed significantly low aridity index value in all seasons. The remote sensing and GIS-based evaluation/results of this study in conjugation with in situ ancillary datasets will support significantly to address the climate-induced risk of farmers to achieve sustainability in food security, enhancing the livelihood, eradication of poverty and magnifying the farm household resilience.


Remote sensing/GIS Precipitation Potential evapotranspiration Aridity index Future climate data India 

Analyse des saisonalen Niederschlages, Evapotranspiration, Trockenheit und zukünftige Niederschlagsanomalien für Ackerfrüchte auf Bundesstaatsebene in Indien


Aufgrund von hydroklimatischen Änderungen im Rahmen des Klimawandels kommt es zu Risiken für die landwirtschaftliche Produktion von Nutzpflanzen. Fernerkundung und GIS können helfen nachhaltige Lösungen bzw. Anpassungsstrategien im Klimawandel für die Praxis bereitzustellen, um zukünftige Risiken zu mindern. Die Studie analysiert saisonale Muster (Kharif-, Rabi- und Zaidperiode) des Niederschlages, der Evapotranspiration und des Ariditätsindex auf Basis von monatlichen Datensätzen (1970–2000) auf der Ebene der Bundesstaaten in Indien. Zusätzlich wurden die aus Klimamodellen berechneten monatlichen Niederschlagsanomalien für 2025 in die Untersuchung einbezogen. Für 2005 wurden die Produktionsbedingungen für die wichtigsten Ackerfrüchte (Reis, Weizen und Mais) in die Untersuchung in Bezug zu saisonalen Mustern betrachtet. Die Auswertung zeigt, dass die saisonalen Trockenheitsindizes in ganz Indien während der Kharif-, Rabi- und Zaid-Saison erheblich variieren, was an den Mustern der Verteilung der Ackerbauflächen der verschiedenen Sorten gut erkennbar ist. Verschiedene Bundesstaaten bekommen während der Kharifsaison genügend Niederschlag. Es zeigt sich aber ein geringer Ariditätsindex in der Rabi- und Zaid-Saison. Daher wird empfohlen, diese Zeiträume zur Speicherung von Niederschlagswasser zu nutzen mit dem Ziel, die landwirtschaftlichen Produktion zu steigern. In den Bundesstaaten in ariden oder semiariden Regionen ist es erforderlich einen politisch gewollten, strategischen Plan zum integrierten Wasserschutzmanagement auf Einzugsgebietsebene zu entwickeln. Traditionelles, ökologisches Wissen für ein längerfristiges, nachhaltiges Management um Resilienz im Klimawandel zu erreichen, ist vor allem in den Bundesstaaten mit geringen Ariditätsindex in allen Jahreszeiten wichtig. Die GIS und Fernerkundungsergebnisse dieser Studie in Verbindung mit den In-situ-Datensätzen tragen dazu bei, das klimabedingte Risiko in der Landwirtschaft zu reduzieren, um Nachhaltigkeit in der Ernährungssicherheit zu erreichen, die Lebensqualität zu erhöhen und die Armut zu bekämpfen.



The authors are grateful to the WorldClim-Global Climate Data, CGIAR Geospatial Community of Practice/Consortium for Spatial Information (CGIAR-CSI), MyGeoHub, NCAR’s GIS Program Climate Change Scenarios GIS and DIVA GIS for providing free download of various datasets used in the analysis.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

42489_2019_20_MOESM1_ESM.docx (41 kb)
Supplementary material 1 (DOCX 41 kb)


  1. Adhikari B, Bag MK, Bhowmick MK, Kundu C (2011) Status paper on rice in West Bengal. In: Rice knowledge management portal (RKMP). Directorate of Rice Research, Rajendranagar, HyderabadGoogle Scholar
  2. Ahmad F, Goparaju L, Qayum A (2019) Geo-spatial perspective of vegetation health evaluation and climate change scenario in India. Spat Inf Res.
  3. Ahmed T, Chetia SK, Chowdhury R, Ali S (2011) Status paper on rice in Assam. In: Rice knowledge management portal. Directorate of rice research, Hyderabad: Rice State Wise, pp 1–49Google Scholar
  4. Anwar MR, Liu LD, Macadam I, Kelly G (2012) Adapting agriculture to climate change: a review. Theor Appl Climatol 113(1–2):225–245. CrossRefGoogle Scholar
  5. Asfaw S, McCarthy N, Lipper L et al (2016) What determines farmers’ adaptive capacity? Empirical evidence from Malawi. Food Secur 8:643. CrossRefGoogle Scholar
  6. Ashaolu ED, Iroye KA (2018) Rainfall and potential evapotranspiration patterns and their effects on climatic water balance in the Western Lithoral Hydrological Zone of Nigeria. Ruhuna J Sci 9(2):92–116. CrossRefGoogle Scholar
  7. Bhandari L, Chakraborty M (2015) Spatial poverty across India. Accessed 18 Feb 2019
  8. Bhushan S (2016) Details of farmers suicides from 2010 to 2014 (From :Ministry of Agriculture & Farmers Welfare). Accessed 20 Nov 2018
  9. Birthal P, Tajuddin KM, Negi D, Agarwal S (2014) Impact of climate change on yields of major food crops in india: implications for food security. Agric Econ Res Rev 27:145. CrossRefGoogle Scholar
  10. Carleton TA (2017) Crop-damaging temperatures increase suicide rates in India. PNAS 114(33):8746–8751. CrossRefGoogle Scholar
  11. FAO (1992) Crop water requirements. Accessed 18 Feb 2019
  12. FAO (2010) “Climate-Smart” agriculture policies, practices and financing for food security, adaptation and mitigation. Food and Agriculture Organization of the United State of America (FAO): Rome, Italy, 2010; pp 1–49. Accessed 20 Nov 2018
  13. FAO (2012) Herbaceous crops Accessed 18 Feb 2019
  14. Fick SE, Hijmans RJ (2017) Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol.
  15. Goparaju L, Ahmad F (2019) Analyzing the risk related to climate change attributes and their impact, a step towards climate-smart village (CSV): a geospatial approach to bring geoponics sustainability in India. Spat Inf Res. Accepted for publicationGoogle Scholar
  16. Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28:1453–1469CrossRefGoogle Scholar
  17. Haworth BT, Biggs E, Duncan J, Wales N, Boruff B, Bruce E (2018) Geographic information and communication technologies for supporting smallholder agriculture and climate resilience. Climate 6(4):97. CrossRefGoogle Scholar
  18. Iizumi T, Ramankutty N (2015) How do weather and climate influence cropping area and intensity? Glob Food Secur 4:46–50. CrossRefGoogle Scholar
  19. Inman M (2011) Opening the future. Nat Clim Change 1:7–9. CrossRefGoogle Scholar
  20. IPCC (2014) Climate change 2014: synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. In: Pachauri RK, Meyer LA (eds) Core writing team, IPCC, GenevaGoogle Scholar
  21. Jagannathan P, Bhalme HN (1973) Changes in pattern of distribution of southwest monsoon rainfall over India associated with sunspots. Mon Weather Rev 101:691–700CrossRefGoogle Scholar
  22. James AJ, Bahadur AV, Verma S (2018) Climate resilient water management: an operational framework from South Asia. ACT Learning PaperGoogle Scholar
  23. Jimenez D, Ramirez-Villegas J (2018) Unlocking big data’s potential to strengthen farmers’ resilience: the platform for big data in agriculture. In: Ospina AV (ed) Big data for resilience storybook: experiences integrating big data into resilience programming. International Institute for Sustainable Development, Winnipeg, pp 97–108Google Scholar
  24. Jodha NS, Singh NP, Bantilan MCS (2012) Enhancing farmers’ adaptation to climate change in arid and semi-arid agriculture of india: evidences from indigenous practices: developing international public goods from development-oriented projects. Working Paper Series no. 32. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid TropicsGoogle Scholar
  25. Karunakaran N (2014) Paddy cultivation in Kerala: trends, determinants and effects on food security. Artha J Soc Sci 13(4):21–35. CrossRefGoogle Scholar
  26. Khatkar B, Chaudhary N, Dangi P (2016) Production and consumption of grains in India.
  27. Killeen TJ, Solorzano LA (2008) Conservation strategies to mitigate impacts from climate change in Amazonia. Philos Trans R Soc Lond B Biol Sci 363(1498):1881–1888. CrossRefGoogle Scholar
  28. Kumar A, Poswal R, Singh G et al (2014) Wheat Cultivation in India (Pocket Guide).
  29. Lang D, Zheng J, Shi J, Liao F, Ma X, Wang W, Chen X, Zhang M (2017) A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman–Monteith method in southwestern China. Water 9:734. CrossRefGoogle Scholar
  30. Lewis MW (2013) Remapping poverty in India. Accessed 22 Jan 2019
  31. Liu Y, Ren L, Yang X et al (2015) Effects of precipitation and potential evaporation on actual evapotranspiration over the Laohahe basin, northern China. Proc IAHS 371:173–179. CrossRefGoogle Scholar
  32. Mahajan AKR (2012) Monitoring growth of wheat crop using digital image processing. Int J Comput Appl 50(10):18–22Google Scholar
  33. Maliva R, Missimer T (2012) Arid lands water evaluation and management. Environ Sci Eng.
  34. Mooley DA, Parthasarathy B (1983) Variability of the Indian summer monsoon and tropical circulation features. Mon Weather Rev 111:967–968CrossRefGoogle Scholar
  35. Mooley DA, Parthasarathy B (1984) Fluctuations in all-India summer monsoon rainfall during 1871–1978. Clim Change 6:287–301. CrossRefGoogle Scholar
  36. NCAR GIS Program (2012) Climate change scenarios, version 2.0. Community climate system model, June 2004 version 3.0. was used to derive data products. NCAR/UCAR. Accessed 5 Jan 2019
  37. Parthasarathy B, Munot AA, Kothawale DR (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49:217. CrossRefGoogle Scholar
  38. Rajeevan M, Unnikrishnan CK, Jyoti B, Niranjan K, Sreekala P (2012) Northeast monsoon over India: variability and prediction. Meteorol Appl 19(2):226–236. CrossRefGoogle Scholar
  39. Ramarao MVS, Sanjay J, Krishnan R et al (2018) On observed aridity changes over the semiarid regions of India in a warming climate. Theor Appl Climatol.
  40. Salinger MJ, Sivakumar MVK, Motha R (2005) Reducing vulnerability of agriculture and forestry to climate variability and change: workshop summary and recommendations. Clim Change 70(1-2):341–362. CrossRefGoogle Scholar
  41. Sharma S (2009) Rethinking watershed development in India: strategy for the twenty first century. In: Achouri M, Tennyson K, Upadhyay K, White R (eds) Proceedings of asian regional workshop on water management, preparing for next generation watershed development programs and projects. Food and Agriculture Organization, Rome, 11–13 September 2003Google Scholar
  42. Spinoni J, Vogt J, Barbosa P (2015) European degree-day climatologies and trends for the period 1951–2011. Int J Climatol 35(1):25–36. CrossRefGoogle Scholar
  43. Srinivasa Rao Ch, Gopinath KA, Prasad JVNS, Kumar P, Singh AK (2016) Climate resilient villages for sustainable food security in tropical India: concept, process, technologies, institutions, and impact. Adv Agron 140:101–214. CrossRefGoogle Scholar
  44. Stadler SJ (2005) Aridity indexes. In: Oliver JE (ed) Encyclopedia of world climatology. Springer, Heidelberg, pp 89–94Google Scholar
  45. Stefan S, Zhao G (2014) Mapping of rainfed and irrigated agriculture in India—data inventory and documentation. Technical report, GEOSHARE pilot—crop science bonn.
  46. Tewari J, Ram M, Roy M, Dagar JC (2014) Livelihood improvements and climate change adaptations through agroforestry in hot arid environments. In: Dagar J, Singh A, Arunachalam A (eds) Agroforestry systems in India: livelihood security and ecosystem services. Advances in Agroforestry, vol 10. Springer, New Delhi.
  47. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–95CrossRefGoogle Scholar
  48. Trabucco A, Zomer R (2019) Global aridity index and potential evapotranspiration (ET0) climate database v2. figshare. Fileset.
  49. UNESCO (1979) Map of the world distribution of arid regions: explanatory note, vol 22. UNESCO, Paris. ISBN: 92-3-101484-6Google Scholar
  50. Venkateswarlu B, Rao VUM (2013) Climate change and its impact on Indian agriculture. Clim Change Model Mitig Adapt
  51. Walton K (1969) The arid zone. Aldine Publishing Co, Chicago, ILGoogle Scholar
  52. Wani SP, Pathak P, Sreedevi TK, Singh HP, Singh P, (2003) Efficient management of rainwater for increased crop productivity and groundwater recharge in Asia. IWMI Books, Reports H032643, International Water Management InstituteGoogle Scholar
  53. Zhao G, Siebert S (2015) Season-wise irrigated and rainfed crop areas for India around year 2005. MyGeoHUB.
  54. Zomer RJ, Bossio DA, Trabucco A, Yuanjie L, Gupta DC, Singh VP (2007) Trees and water: smallholder agroforestry on irrigated lands in Northern India. International Water Management Institute, Colombo, (IWMI Research Report 122)Google Scholar
  55. Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008) Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric Ecosyst Environ 126(1–2):67–80. CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Kartographie e.V. 2019

Authors and Affiliations

  1. 1.Vindhyan Ecology and Natural History FoundationMirzapurIndia

Personalised recommendations