Advertisement

The Tichauer-DeTomi Matrix: a Tool for Assessment of Geological Uncertainty in Small-scale Mining

  • Ricardo TichauerEmail author
  • Giorgio De Tomi
Article
  • 10 Downloads

Abstract

Mineral exploration is a critical step for success in mining. However, small-scale mining often ignores exploration best practices. This paper introduces the Tichauer-DeTomi Matrix, a tool for assessment of geological uncertainty in small-scale mining. This matrix, which measures the level of compliance of exploration programs in small deposits with industry best practices, has been applied to three small mining projects in Brazil: an artisanal gold mine in the Amazon, a small-scale manganese mining venture in the Northeast, and a small manganese deposit in the Southeast. The application of the matrix resulted in indexes that reflect the actual level of maturity of the mineral exploration program in each project. Therefore, the matrix has shown potential to be an effective tool for assessment of the geological uncertainty remaining in small-scale mineral projects, as well as to identify priority exploration activities for reduction of risks associated with the geological uncertainty. As a risk assessment tool, the Tichauer-DeTomi Matrix may be helpful in promoting investment and sustained development in and around small mines.

Keywords

Small-scale mining Mineral exploration Tichauer-DeTomi Matrix 

Notes

Acknowledgements

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001 and by the National Scientific Council (CNPQ)-Grant 3061177/2017-0.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Godoy M (2002) The effective management of geological risk in long-term production scheduling of open pit mines. Thesis, The University of QueenslandGoogle Scholar
  2. 2.
    Bardossy J, Fodor J (2001) Traditional and new ways to handle uncertainty in geology. Nat Resour Res 10(3):179–187.  https://doi.org/10.1023/A:1012513107364 CrossRefGoogle Scholar
  3. 3.
    Marin T, De Tomi G (2010) Modelagem de dados de entrada para simulação estocástica de lavra. Revista Escola de Minas 63(3):559–562.  https://doi.org/10.1590/S0370-44672010000300020 CrossRefGoogle Scholar
  4. 4.
    Ribeiro DT, Filho CGM, Souza LE, Costa JFCL (2012) Utilização de critérios geoestatísticos para comparação de malha de sondagem visando à maximização da quantidade de recursos. Rem: Revista Escola de Minas 65(1):113–118.  https://doi.org/10.1590/S0370-44672012000100016 CrossRefGoogle Scholar
  5. 5.
    Seccatore J, De Tomi G, Veiga M (2014) Efficiency as a road to sustainability in small scale mining. Mater Sci Forum 805:395–402.  https://doi.org/10.4028/www.scientific.net/MSF.805.395 CrossRefGoogle Scholar
  6. 6.
    Balzino M, Seccatore J, Marin T, De Tomi G, Veiga M (2015) Gold losses and mercury recovery in artisanal gold mining on the Madeira River, Brazil. J Clean Prod 102:370–377.  https://doi.org/10.1016/j.jclepro.2015.05.012 CrossRefGoogle Scholar
  7. 7.
    Brandão R, De Tomi G (2011) Metodologia para estimativa e gestão da produtividade de lavra. Revista Escola de Minas 64(1):77–83.  https://doi.org/10.1590/S0370-44672011000100010 CrossRefGoogle Scholar
  8. 8.
    Freitas S, Aires B, De Tomi G, Agra R (2015) Risk management incorporated to life-of-mine planning at Sossego copper mine, Carajás. Braz Mater Sci Forum 805:263–271.  https://doi.org/10.4028/www.scientific.net/MSF.805.263 CrossRefGoogle Scholar
  9. 9.
    Goryachev NA, Pirajno F (2014) Gold deposits and gold metallogeny of Far East Russia. Ore Geol Rev 59:123–151.  https://doi.org/10.1016/j.oregeorev.2013.11.010 CrossRefGoogle Scholar
  10. 10.
    Pirajno F, Mernagh T, Huston D, Creaser R, Seltmann R (2016) The Mesoproterozoic Abra polymetallic sedimentary rock-hosted mineral deposit, Edmund Basin, Western Australia. Ore Geol Rev 76:442–462.  https://doi.org/10.1016/j.oregeorev.2015.04.019 CrossRefGoogle Scholar
  11. 11.
    Zhong J, Chen YJ, Pirajno F (2017) Geology, geochemistry and tectonic settings of the molybdenum deposits in South China: a review. Ore Geol Rev 81:829–855.  https://doi.org/10.1016/j.oregeorev.2016.04.012 CrossRefGoogle Scholar
  12. 12.
    Wang C, Rao J, Chen J, Ouyang Y, Qi S, Li Q (2017) Prospectivity mapping for “Zhuxi-type” copper-tungsten polymetallic deposits in the Jingdezhen region of Jiangxi Province, South China. Ore Geol Rev 89:1–14.  https://doi.org/10.1016/j.oregeorev.2017.05.022 CrossRefGoogle Scholar
  13. 13.
    Soloviev SG, Kryazhev SG, Dvurechenskaya SS (2017) Geology, mineralization, and fluid inclusion characteristics of the Lermontovskoe reduced-type tungsten (±Cu, Au, Bi) skarn deposit, Sikhote-Alin, Russia. Ore Geol Rev 89:15–39.  https://doi.org/10.1016/j.oregeorev.2017.06.002 CrossRefGoogle Scholar
  14. 14.
    Maghfouri S, Rastad E, Mousivand F, Choulet F, Ye L (2017) Geological and geochemical constraints on the Cheshmeh-Frezi volcanogenic stratiform manganese deposit, southwest Sabzevar basin, Iran. Ore Geol Rev 89:96–113.  https://doi.org/10.1016/j.oregeorev.2017.06.015 CrossRefGoogle Scholar
  15. 15.
    Liu A, Zhang X, Ulrich T, Zhang J, Jiang M, Liu W (2017) Geology, geochronology and fluid characteristics of the Pingqiu gold deposit, Southeastern Guizhou Province, China. Ore Geol Rev 89:187–205.  https://doi.org/10.1016/j.oregeorev.2017.05.025 CrossRefGoogle Scholar
  16. 16.
    Albuquerque MFS, Horbe AMC, Botelho NF (2017) Genesis of manganese deposits in southwestern Amazonia: mineralogy, geochemistry and paleoenvironment. Ore Geol Rev 89:270–289.  https://doi.org/10.1016/j.oregeorev.2017.06.012 CrossRefGoogle Scholar
  17. 17.
    Guice GL, Törmänen T, Karykowski BT, Johanson B, Lahaye Y (2017) Precious metal mineralisation in the Sotkavaara Intrusion, northern Finland: peak Pt, Pd, Au and Cu offsets in a small intrusion with poorly-developed magmatic layering. Ore Geol Rev 89:701–718.  https://doi.org/10.1016/j.oregeorev.2017.07.010 CrossRefGoogle Scholar
  18. 18.
    Maffini MN, Wemmer K, Radice S, Oriolo S, D'Eramo F, Coniglio J, Demartis M, Pinotti L (2017) Polymetallic (Pb-Zn-Cu-Ag-Au) vein-type deposits in brittle-ductile transtensional shear zones, Eastern Sierras Pampeanas (Argentina): age constraints and significance for the Late Paleozoic tectonic evolution and metallogenesis. Ore Geol Rev 89:668–682.  https://doi.org/10.1016/j.oregeorev.2017.07.003 CrossRefGoogle Scholar
  19. 19.
    Bedini E (2011) Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Adv Space Res 47(1):60–73.  https://doi.org/10.1016/j.asr.2010.08.021 CrossRefGoogle Scholar
  20. 20.
    Pour AB, Hashim M (2012) The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol Rev 44:1–9.  https://doi.org/10.1016/j.oregeorev.2011.09.009 CrossRefGoogle Scholar
  21. 21.
    Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol Rev 38(1–2):59–69.  https://doi.org/10.1016/j.oregeorev.2010.05.007 CrossRefGoogle Scholar
  22. 22.
    Gabr SS, Hassan SM, Sadek MF (2015) Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol Rev 71:1–13.  https://doi.org/10.1016/j.oregeorev.2015.04.021 CrossRefGoogle Scholar
  23. 23.
    Goodenough KM, Schilling J, Jonsson E, Kalvig P, Charles N, Tuduri J, Deady EA, Sadeghi M, Schiellerup H, Müller A, Bertrand G, Arvanitidis N, Eliopoulos DG, Shaw RA, Thrane K, Keulen N (2016) Europe’s rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol Rev 72(1):838–856.  https://doi.org/10.1016/j.oregeorev.2015.09.019 CrossRefGoogle Scholar
  24. 24.
    Ford A, Blenkinsop TG (2008) Combining fractal analysis of mineral deposit clustering with weights of evidence to evaluate patterns of mineralization: application to copper deposits of the Mount Isa Inlier, NW Queensland, Australia. Ore Geol Rev 33(3–4):435–450.  https://doi.org/10.1016/j.oregeorev.2007.01.004 CrossRefGoogle Scholar
  25. 25.
    Wang Q, Deng J, Liu H, Yang L, Wan L, Zhang R (2010) Fractal models for ore reserve estimation. Ore Geol Rev 37(1):2–14.  https://doi.org/10.1016/j.oregeorev.2009.11.002 CrossRefGoogle Scholar
  26. 26.
    Wang Q, Deng J, Zhao J, Liu H, Wan L, Yang L (2010) Tonnage-cutoff model and average grade-cutoff model for a single ore deposit. Or Geol 38(1–2):113–120.  https://doi.org/10.1016/j.oregeorev.2010.07.003 CrossRefGoogle Scholar
  27. 27.
    Hammarstrom JM, Mihalasky MJ, Ludington S, Phillips JD, Berger BR, Denning PD, Dicken CL, Mars JC, Zientek ML, Herrington RJ, Seltmann R (2017) Undiscovered porphyry copper resources in the Urals—a probabilistic mineral resource assessment. Ore Geol Rev 85:181–203.  https://doi.org/10.1016/j.oregeorev.2016.09.007 CrossRefGoogle Scholar
  28. 28.
    Canadian Securities Administrators (CSA) (2011) National Instrument 43-101 - Standards of Disclosure for Mineral Projects. https://mrmr.cim.org/en/standards/canadian-securities-regulatory-standards-for-mineral-projects/. Accessed 15 May 2016
  29. 29.
    The Australasian Joint Ore Reserves Committee (2012) The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (‘the JORC Code’). www.jorc.org/docs/jorc_code2012.pdf. Accessed 17 May 2016
  30. 30.
    The Committee for Mineral Reserves International Reporting Standards - Council of Mining and Metallurgical Institutes (CMMI) (2006) International Minerals Reporting Template (CRIRSCO Template). www.crirsco.com. Accessed 17 May 2016
  31. 31.
    Buxton A (2013) Responding to the challenge of artisanal and small-scale mining. How can knowledge networks help? IIED, LondonGoogle Scholar
  32. 32.
    Villegas C, Weinberg R, Levin E, Hund K (2012) Artisanal and Small-Scale Mining in Protected Areas and Critical Ecosystems Programme (ASM-PACE): a global solutions study. World Wide Fund for Nature and Estelle Levin, NairobiGoogle Scholar
  33. 33.
    Hentschel T, Hruschka F, Priester M (2002) Global report on artisanal and small-scale mining. IIED, LondonGoogle Scholar
  34. 34.
    Tichauer RM (2016) Matriz de Priorização Aplicada à Pesquisa Mineral na Pequena Mineração. Dissertation, Universidade de Sao PauloGoogle Scholar
  35. 35.
    Hentschel T, Hruschka F, Priester M (2003) Artisanal and small-scale mining: challenges and opportunities. IIED, LondonGoogle Scholar
  36. 36.
    Cremers L, Kolen J, Theije M (2013) Small-scale gold mining in the Amazon. CEDLA, AmsterdamGoogle Scholar
  37. 37.
    Milanez B, Oliveira JAP (2013) Innovation for sustainable development in artisanal mining: advances in a cluster of opal mining in Brazil. Res Policy 38(4):427–434.  https://doi.org/10.1016/j.resourpol.2013.07.003 CrossRefGoogle Scholar
  38. 38.
    Miserendino RA, Bergquist BA, Adler SE, Guimarães JRD, Lees PSJ, Niquen W, Velasquez-López PC, Veiga MM (2013) Challenges to measuring, monitoring, and addressing the cumulative impacts of artisanal and small-scale gold mining in Ecuador. Res Policy 38(4):713–722.  https://doi.org/10.1016/j.resourpol.2013.03.007 CrossRefGoogle Scholar
  39. 39.
    Van Bockstael S (2014) The persistence of informality: perspectives on the future of artisanal mining in Liberia. Futures 62(A):10–20.  https://doi.org/10.1016/j.futures.2014.02.004 CrossRefGoogle Scholar
  40. 40.
    Byizigiro R, Raab T, Maurer T (2015) Small-scale opencast mining: an important research field for anthropogenic geomorphology. Die Erde - J Geogr Soc Berlin 146(4):213–231.  https://doi.org/10.12854/erde-146-21 CrossRefGoogle Scholar
  41. 41.
    Seccatore J, Marin T, De Tomi G, Veiga M (2014) A practical approach for the management of resources and reserves in small-scale mining. J Clean Prod 84:803–808.  https://doi.org/10.1016/j.jclepro.2013.09.031 CrossRefGoogle Scholar
  42. 42.
    Martins AC, Elis V, De Tomi G, Bettencourt J, Marin T (2016) Resistivity and induced polarization to support morphological modeling in limestone mining. Geofis Int 55(4):227–238.  https://doi.org/10.19155/geofint.2016.055.4.1 CrossRefGoogle Scholar
  43. 43.
    Arruda F (2010) Matriz de Priorização CEB: Aprenda usar e baixe modelo grátis. http://www.arrudaconsult.com.br/2015/02/matriz-de-priorizacao-ceb-aprenda-usar.html. Accessed 7 March 2016

Copyright information

© Society for Mining, Metallurgy & Exploration Inc. 2019

Authors and Affiliations

  1. 1.Department of Mining and Petroleum EngineeringUSP - Universidade de São PauloSão PauloBrazil

Personalised recommendations