Helmet-CAM: Strategically Minimizing Exposures to Respirable Dust Through Video Exposure Monitoring

  • 7 Accesses


Exposure to respirable crystalline silica (RCS) remains a serious health hazard to the US mining workforce who are potentially exposed as various ore bodies are drilled, blasted, hauled by truck, crushed, screened, and transported to their destinations. The current Mine Safety and Health Administration (MSHA) permissible exposure limit (PEL) for RCS remains at approximately 100 μg/m3, but it is noteworthy that the Occupational Safety and Health Administration (OSHA) has lowered its PEL to 50 μg/m3 (with enforcement dates staggered through 2022 for various sectors), and the National Institute for Occupational Safety and Health (NIOSH) has held a 50 μg/m3 recommended standard since 1976. To examine a method for reducing RCS exposure using a NIOSH-developed video exposure monitoring (VEM) technology (referred to as Helmet-CAM), video and respirable dust concentration data were collected on eighty miners across seven unique mining sites. The data was then collated and partitioned using a thresholding scheme to determine exposures that were in excess of ten times the mean exposure for that worker. Focusing on these short duration, high magnitude exposures can provide insight to implement controls and interventions that can dramatically lower the employee’s overall average exposure. In 19 of the 80 cases analyzed, it was found that exposure could be significantly lowered by 20% or more by reducing exposures that occur during just 10 min of work per 8-hour shift. This approach provides a method to quickly analyze and determine which activities are creating the greatest health concerns. In most cases, once identified, focused control technologies or behavioral modifications can be applied to those tasks.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 148

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    MSHA (2017) MSHA Data Sets; Personal Health Samples.

  2. 2.

    Reed WR, Kwitowski AJ, Helfrich WJ, Cecala AB, Joy GJ (2014) Guidelines for performing a helmet-CAM Respirable dust survey and conducting subsequent analysis with the enhanced video analysis of dust exposures (EVADE) software. Pittsburgh, PA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2014-133, RI 9696

  3. 3.

    Cecala AB, Reed WR, Joy GJ, Westmoreland SC, O’Brien AD (2013) Helmet-Cam: tool for assessing miners’ respirable dust exposure. Min Eng 65(9):78

  4. 4.

    Haas EJ, Cecala AB (2017) Quick fixes to improve workers’ health: results using engineering assessment technology. Min Eng 69(7):105

  5. 5.

    Scientific TF [2019]. Personal dataram™ pdr-1500 aerosol monitor.ttps://

  6. 6.

    Haas EJ, Cecala AB, Hoebbel CL (2016) Using dust assessment technology to leverage mine site manager-worker communication and health behavior: a longitudinal case study. J progress res soc sci 3(1):154–167

  7. 7.

    Haas, E. and A. Cecala, Beyond assessment: Helmet-CAM technology influencing dust exposure awareness and response. Rock Products, 2015(November): p. 28–29

  8. 8.

    Haas EJ, Cecala AB, Colinet JF (2019) Comparing the implementation of two dust control technologies from a sociotechnical systems perspective. J Mining, Metallurgy Exploration 36(4):709–727

  9. 9.

    Cecala, A.B., Haas, E.J., Patts, J., Azman, A., Cole, G.P. Helmet-CAM: an innovative tool for exposure assessment of respirable dust and other contaminants. In 16th North American Mine Ventilation Symposium. Boulder. 2017. Boulder CO

  10. 10.

    Cecala AB, O’brien AD, Schall J et al (2012) Dust control handbook for industrial minerals mining and processing. In: Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. Research, Office of Mine Safety and Health

  11. 11.

    Williams KL, Timko RJ (1984) Performance evaluation of a real-time aerosol monitor, 8968. US Dept. of the Interior, Bureau of Mines

  12. 12.

    Reed WR, Potts JD, Cecala AB, Archer WJ (2012) Use of the 1500-pDR for gravimetric respirable dust measurements at mines. SME Trans 332:512–520

  13. 13.

    Patts JR, Tuchman DP, Rubinstein EN, Cauda EG, Cecala AB (2019) Performance comparison of real-time light scattering dust monitors across dust types and humidity levels. Mining, Metallurgy & Exploration (MME) Journal 36(4):741–749.

Download references

Author information

Correspondence to J.R. Patts.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.


The findings and conclusions in this paper are those of the authors and do not necessarily represent the official position of the National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention. Mention of any company or product does not constitute endorsement by NIOSH.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patts, J., Cecala, A. & Haas, E. Helmet-CAM: Strategically Minimizing Exposures to Respirable Dust Through Video Exposure Monitoring. Mining, Metallurgy & Exploration (2020).

Download citation


  • Video
  • Exposure
  • Monitoring
  • Silica
  • Exposure
  • Respirable