Advertisement

DGNeurologie

, Volume 2, Issue 1, pp 15–33 | Cite as

Konsensuspapier zum Einsatz der therapeutischen Apherese in der Neurologie

  • W. KöhlerEmail author
  • C. G. Bien
  • S. Ehrlich
  • J. Faiss
  • C. Finke
  • R. Gold
  • A. Günther
  • L. Harms
  • F. Heigl
  • J. Heine
  • F. Hoffmann
  • R. W. C. Janzen
  • G. J. Jungehülsing
  • B. Kieseier
  • I. Kleiter
  • A. Kraft
  • F. Paul
  • H. Prüß
  • S. Schimrigk
  • C. Sommer
  • M. Stettner
  • C. Trebst
  • H. Tumani
Konsensuspapier
  • 14 Downloads

Zusammenfassung

Bei einer stetig wachsenden Zahl von neurologischen Erkrankungen spielen Autoimmunität und Autoantikörper eine Rolle. Mit der therapeutischen Apherese (TA) können autoimmunpathogenetisch relevante Bestandteile aus dem Blut des Patienten direkt und rasch entfernt werden. Die TA kommt häufig dann zum Einsatz, wenn in einer akuten Krankheitssituation andere Behandlungen nicht oder nicht ausreichend wirksam waren, wie z. B. beim steroidrefraktären Schub der multiplen Sklerose. Das Einsatzspektrum für die TA reicht bis hin zu lebensbedrohlichen Situationen in der Intensivtherapie. Die Durchführung der Behandlungen erfordert in der Regel eine interdisziplinäre Zusammenarbeit. In diesem Konsensuspapier wird erstmals die bestverfügbare Evidenz für die wichtigsten neurologischen Indikationen unter Einbezug der aktuellen Studienlage und von Hinweisen auf die TA in den Leitlinien der DGN (Deutsche Gesellschaft für Neurologie) zusammengefasst und bewertet, und es werden Handlungsempfehlungen für die klinische Praxis gegeben. Praktische Aspekte der TA wie Therapieschemata, Antikoagulation, Gefäßzugang, Nebenwirkungen und Begleitmedikation sowie das Thema Kostenerstattung werden dargelegt. Die wesentlichen Methoden der TA, der Plasmaaustausch und die Immunadsorption, werden erläutert und ihre Unterschiede erklärt.

Schlüsselwörter

Plasmaaustausch Immunadsorption Multiple Sklerose Autoimmunerkrankungen des Nervensystems Myasthenia gravis Polyradikuloneuropathie 

Consensus paper on the use of therapeutic apheresis in neurology

Abstract

Autoimmunity and antibody-mediated pathologies play an important role in an increasing number of neurological diseases. Removal of pathogenic autoantibodies using therapeutic apheresis (TA) thus appears to be a reasonable concept, especially in critically ill patients or after failure of first-line treatment options, e. g. in steroid-refractory multiple sclerosis (MS) relapses. This manuscript provides a comprehensive overview of currently available clinical experience using TA in neurological diseases. Best available evidence on the use of TA including current study data and guidelines of the German Neurological Society are evaluated and summarized in a brief recommendation for clinical practice. In addition, practical aspects (treatment frequency, exchange volume, anticoagulation, side effects, concomitant medication, and reimbursement) are described and recommendations for clinical practice are given.

Keywords

Plasma exchange Immunoadsorption Multiple sclerosis Autoimmune diseases of the nervous system Myasthenia gravis Polyradiculoneuropathy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C.G. Bien erhielt Vortrags- oder Beraterhonorare der Firmen UCB, Desitin, Biogen, Eurimmun und Labor Krone. Weiterhin erhielt C.G. Bien finanzielle Unterstützung durch die Deutsche Forschungsgemeinschaft (Bonn, Deutschland) und die Gerd Altenhof-Stiftung (Deutsches Stiftungs-Zentrum, Essen). S. Ehrlich erhielt Vortrags- und Beraterhonorare sowie Reisekosten- und Weiterbildungsunterstützung der Firmen Allegran, Bayer, Biogen, Genzyme, Grifols, Merck Serono, Novartis, TEVA. J. Faiss erhielt Vortragshonorare von Bayer, Böhringer, Biogen, Merck, Novartis, Sanofi-Genzyme, Roche. C. Finke erhielt Vortragshonorare der Firma Bristol-Myers Squibb und Forschungsförderung von Euroimmun. R. Gold erhielt Vortrags- und Beraterhonorare von Bayer Schering, BiogenIdec, Genzyme, Merck Serono, Novartis, TEVA. Seine Abteilung erhielt Forschungsunterstützung der Firmen Bayer Schering, BiogenIdec, Genzyme, Merck Serono, Novartis, TEVA. Er besitzt Aktien der Firmen Merck Serono und Roche. A. Günther erhielt Vortrags- und Beraterhonorare und sowie Reisekostenunterstützungen von Boehringer Ingelheim, Daiichi Sankyo, Pfizer, Bayer, Ipsen. L. Harms erhielt Vortragshonorare von Biogen, TEVA, Bayer, Grifols, Merck Serono, Novartis, Genzyme, Roche und vom Apherese-Forschungsinstitut sowie Forschungsunterstützung von Diamed und TEVA, Reiseunterstützung von Biogen, Bayer, Merck Serono sowie Beraterhonorare von Biogen, Roche, Novartis und Argenx. F. Heigl erhielt Referentenhonorare und Zuwendungen für medizinische Fortbildungen von den Firmen Abbott, Amgen, B. Braun, Berlin-Chemie AG, Boehringer Ingelheim, Bristol-Myers Squibb, Diamed, Fresenius, MSD, Novartis, RiePharm GmbH, Roche, Sanofi Aventis. F. Hoffmann erhielt Vortrags- und Beraterhonorare sowie Reiseunterstützung von Alexion, Bayer, Biogen, Diamed, Genzyme, Ipsen, Merck Serono, Novartis, Roche, TEVA, Forschungsunterstützung von Bayer, Cyliax-Stiftung, Merck Serono, Novartis. R.W.C. Janzen ist Mitglied der Arzneimittelkommission der Deutschen Ärzteschaft und Vorsitzender der Expertengruppe („off-label“) Neurologie/Psychiatrie. G. J. Jungehülsing erhielt Beraterhonorare der Firmen Cipio Partners, München und Elron Electronic Industries Ltd., Tel Aviv. W. Köhler erhielt Vortrags- und Beraterhonorare sowie Reisekostenunterstützungen von Alexion, Bayer, Genzyme, Grifols, Hormosan, MedDay, Merck, Minoryx, Novartis, Pharmaelle, Roche. B. Kieseier erhielt Vortrags- bzw. Beratungshonorare von Bayer HealthCare, Biogen, Genzyme/Sanofi Aventis, Grifols, Merck Serono, Mitsubishi Europe, Novartis, Roche, Talecris und TEVA. Darüber hinaus ist er gegenwärtig auch Angestellter der Firma Biogen. A. Kraft erhielt Vortragshonorare/Reisekostenunterstützung von Bayer HealthCare, Boehringer-Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo; Projektunterstützung von Novartis, Ipsen, Bayer HealthCare, Diamed, Merz Pharma GmbH & Co. KG. I. Kleiter erhielt Berater- und Vortragshonorare der Firmen Bayer HealthCare, BiogenIdec, Chugai, Merck, Novartis, Sanofi, Shire, Roche sowie Unterstützung für Forschungsvorhaben von Chugai und Diamed. F. Paul erhielt Referentenhonorare und Reisekosten der Firmen Novartis, Merck, TEVA, Sanofi, Bayer; Honorare für Beratung von MedImmune, Novartis; Forschungsunterstützung von Roche, Chugai, MedImmune, Merck Serono, Sanofi-Genzyme, Parexel, Bayer, Biogen, TEVA, Novartis. H. Prüß erhielt Vortragshonorare der Firmen Roche, Euroimmun und Fresenius. S. Schimrigk erhielt Vortragshonorare und Forschungsunterstützung von Bayer vital, Biogen, Bionorica, Diamed, Genzyme, Merck, Novartis, Pfizer, Roche, Sanofi-Aventis, TEVA, UCB. C. Sommer erhielt Vortrags und Beraterhonorare von Air Liquide, Alnylam, AStellas, CSL Behring, Grifols, Kedrion, Pfizer, Sanofi-Genzyme, Shire, UCB. M. Stettner erhielt Vortrags- und Beraterhonorare oder Reisekostenunterstützung von BiogenIdec, Novartis, UCB, LFB, Roche, Merck, Octapharma, Grifols und TEVA sowie Forschungsunterstützung von UCB. C. Trebst erhielt Honorare für Vorträge auf Fortbildungsveranstaltungen von BiogenIdec, Genzyme und Novartis Pharmaceuticals. H. Tumani erhielt Forschungsunterstützung, Vortragshonorare und Reiseunterstützung der Firmen Bayer, Biogen, Genzyme, Fresenius, Merck, Mylan, Novartis, Roche, Siemens Health Diagnostics, TEVA sowie Forschungsunterstützung durch die Hertie-Stiftung, DMSG, BMBF, Universität Ulm und die Landesstiftung BW. J. Heine gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Schwartz J, Padmanabhan A, Aui N et al (2016) Guidelines on the use of therapeutic apheresis in clinical practice – evidence-based approach from the writing committee of the American Society for Apheresis: the seventh special issue. J Clin Apher 31:149–162 (Suppl. 163–338)PubMedPubMedCentralGoogle Scholar
  2. 2.
    Boser M, Kielstein J (2016) Plasmaaustausch – „It’s time for a change in plasma exchange“. Dial Aktuell 20(10):497–500Google Scholar
  3. 3.
    Köhler W, Bucka C, Klingel R (2011) A randomized and controlled study comparing immunoadsorption and plasma exchange in myasthenic crisis. J Clin Apher 26:347–355PubMedGoogle Scholar
  4. 4.
    Heigl F, Hettich R, Arendt R et al (2013) Immunoadsorption in steroid-refractory multiple sclerosis: clinical experience in 60 patients. Atheroscler Suppl 14:167–173PubMedGoogle Scholar
  5. 5.
    Heigl F, Hettich R (2015) Behandlung der steroidrefraktären Multiplen Sklerose. Einsatzgebiet der therapeutischen Apherese. Dial Aktuell 19(4):198–206Google Scholar
  6. 6.
    Krankheitsbezogenes Kompetenznetz Multiple Sklerose (2018) Qualitätshandbuch MS/NMOSD. Empfehlungen zur Therapie der Multiplen Sklerose/Neuromyelitis-optica-Spectrum-Erkrankungen. http://www.kompetenznetz-multiplesklerose.de. Zugegriffen: 31.10.2018Google Scholar
  7. 7.
    Koessler J, Kobsar A, Kuhn S et al (2015) The effect of immunoadsorption with the immusorba TR-350 on coagulation compared to plasma exchange. Vox Sang 108:46–21PubMedGoogle Scholar
  8. 8.
    Cheng C, Hendrickson J, Tormey C, Sidu D (2017) Therapeutic plasma exchange and its impact on drug levels. An ACLPS critical review. Am J Clin Pathol 148:190–198PubMedGoogle Scholar
  9. 9.
    Lemaire A, Parquet N, Galicier L et al (2017) Plasma exchange in the intensive care unit: technical aspects and complications. J Clin Apher.  https://doi.org/10.1002/jca.21529 CrossRefPubMedGoogle Scholar
  10. 10.
    McGuckin S, Westwood J, Webster H et al (2014) Characteriszation of the complications associated with plasma exchange for thrombotic thrombocytopaenic purpura and related thrombotic microangiopathic anaemias: a single institution experience. Vox Sang 106:116–166Google Scholar
  11. 11.
    Álvarez M, Luis-Hidalgo M, Bracho MA et al (2016) Transmission of human immunodeficiency virus type-1 by freshfrozen plasma treated with methylene blue and light. Transfusion 56(4):831–836PubMedGoogle Scholar
  12. 12.
    Hauser L, Roque-Afonso AM, Beylouné A et al (2014) Hepatitis E transmission by transfusion of intercept blood systemtreated plasma. Blood 123:796–797PubMedGoogle Scholar
  13. 13.
    Hewitt P, Ijaz S, Brailsford S et al (2014) Hepatitis E virus in blood components: a prevalence and transmission study in southeast England. Lancet 384:1766–1773PubMedGoogle Scholar
  14. 14.
    Zöllner S, Pablik E, Druml W et al (2014) Fibrinogen reduction and bleeding complications in plasma exchange, immunoadsorption and a combination of the two. Blood Purif 38:160–166PubMedGoogle Scholar
  15. 15.
    Schneider-Gold C, Krenzer M, Klinker E et al (2016) Immunoadsorption versus plasma exchange versus combination for treatment of myasthenic deterioration. Ther Adv Neurol Disord 9(4):297–303PubMedPubMedCentralGoogle Scholar
  16. 16.
    Klingel R, Heibges A, Fassbender C (2009) Plasma exchange and immunoadsorption for autoimmune neurologic disorders – current guidelines and future perspectives. Atheroscler Suppl 10(5):129–132PubMedGoogle Scholar
  17. 17.
    Grob D, Simpson D, Mitsumoto H et al (1995) Treatment of myasthenia gravis by immunoadsorption of plasma. Neurology 45:338–344PubMedGoogle Scholar
  18. 18.
    Fassbender C, Heibges A (2013) Therapeutische Apherese – Kostenerstattung in Deutschland. Dial Aktuell 17(10):531–534Google Scholar
  19. 19.
    INEK-Institut für das Entgeltsystem im Krankenhaus (2018) G‑DRG-System (www.g-drg.de)Google Scholar
  20. 20.
    Kribben A, Lütkes P, Müller H (2004) Kostenkalkulation für die Dialyse und andere Therapieverfahren in der Nephrologie. Krankenhaus 5:356–363Google Scholar
  21. 21.
    Petersen G, Wittmann R, Arndt V et al (2014) Epidemiologie der Multiplen Sklerose in Deutschland. Nervenarzt 85(8):990–998PubMedGoogle Scholar
  22. 22.
    Gold R (2012) Diagnose und Therapie der Multiplen Sklerose. In: Diener & Weimar Hrsg. Leitlinien für Diagnostik und Therapie in der Neurologie der Deutschen Gesellschaft für Neurologie. Stuttgart, New York: Thieme, September. https://www.dgn.org/leitlinien/2333-ll-31-2012-diagnose-und-therapie-der-multiplen-sklerose. Zugegriffen: 30. Juni 2018Google Scholar
  23. 23.
    Novotna M, Solán M, Zeid N et al (2015) Poorly relapse recovery affects onset of progressive disease course in multiple sclerosis. Neurology 85(8):722–729PubMedPubMedCentralGoogle Scholar
  24. 24.
    Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med 354:942–955PubMedGoogle Scholar
  25. 25.
    Meinl E, Derfuss T, Krumbholz M, Pröbstel AK, Hohlfeld R (2011) Humoral autoimmunity in multiple sclerosis. J Neurol Sci 306:180–182PubMedGoogle Scholar
  26. 26.
    Hemmer B, Kerschensteiner M, Korn T (2015) Role of the innate and adaptive immune response in the course of multiple sclerosis. Lancet Neurol 14:406–419PubMedGoogle Scholar
  27. 27.
    Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demylination. Ann Neurol 47:707–717PubMedGoogle Scholar
  28. 28.
    Keegan M, Konig F, McClelland R, Bruck W, Morales Y, Bitsch A et al (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366(9485):579–582PubMedGoogle Scholar
  29. 29.
    Stork L, Ellenberger D, Beißbarth T, Friede T, Lucchinetti CL, Brück W, Metz I (2018) Differences in the response to apheresis therapy of patients with 3 histopathologically classified immunopathological patterns of multiple sclerosis. JAMA Neurol 75(4):428–435PubMedGoogle Scholar
  30. 30.
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, Bar-Or A, Panzara M, Sarkar N, Agarwal S, LangerGould A, Smith CH, HERMES Trial Group (2008) B‑cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358(7):676–688PubMedGoogle Scholar
  31. 31.
    Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L, OPERA I and OPERA II Clinical Investigators (2017) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 376(3):221–234PubMedGoogle Scholar
  32. 32.
    Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, de Seze J, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Rammohan KW, Selmaj K, Traboulsee A, Sauter A, Masterman D, Fontoura P, Belachew S, Garren H, Mairon N, Chin P, Wolinsky JS, ORATORIO Clinical Investigators (2017) Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med 376(3):209–220PubMedGoogle Scholar
  33. 33.
    Klingel R, Heibges A, Fassbender C (2013) Neurologic diseases of the central nervous system with pathophysiologically relevant autoantibodies – perspectives for immunoadsorption. Atheroscler Suppl 14:161–165PubMedGoogle Scholar
  34. 34.
    Ehler J, Koball S, Sauer M et al (2015) Response to therapeutic plasma exchange as a rescue treatment in clinically isolated syndromes and acute worsening of multiple sclerosis: a retrospective analysis of 90 patients. PLoS ONE.  https://doi.org/10.1371/journal.pone.0134583 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schilling S, Linker R, König F et al (2006) Plasmaaustausch bei steroidresistenten Multiple Sklerose Schüben – Klinische Erfahrungen an 16 Patienten. Nervenarzt 77:430–438PubMedGoogle Scholar
  36. 36.
    Schröder A, Fischer M, Meyer C et al (2009) Plasmapherese in der Eskalationstherapie der Multiplen Sklerose: Verlaufsbeobachtung an 35 Patienten. Aktuelle Neurol 36:105–110Google Scholar
  37. 37.
    Trebst C, Reising A, Kielstein J et al (2009) Plasma exchange therapy in steroid unresponsive relapses in patients with multiple sclerosis. Blood Purif 28:108–115PubMedGoogle Scholar
  38. 38.
    Weinshenker BG, O’Brien PC, Petterson TM et al (1999) A randomized trial of plasma exchange in acute central nervous system inflammatory demyelinating disease. Ann Neurol 46:878–886PubMedGoogle Scholar
  39. 39.
    Hoffmann F, Kraft A, Heigl F et al (2015) Tryptophan-Immunadsorption bei Multipler Sklerose und Neuromyelitis optica. Therapieoption bei akuten Schüben in der Schwangerschaft und Stillphase. Nervenarzt 86:179–186PubMedGoogle Scholar
  40. 40.
    Koziolek M, Tampe D, Bähr M et al (2012) Immunoadsorption therapy in patients with multiple sclerosis with steroidrefractory optical neuritis. J Neuroinflammation 9:80PubMedPubMedCentralGoogle Scholar
  41. 41.
    Mauch E, Zwanzger J, Hettich R et al (2011) Immunadsorption bei steroidrefraktärem Schub der Multiplen Sklerose. Nervenarzt 82:1590–1595PubMedGoogle Scholar
  42. 42.
    Schimrigk S, Adibi I, Eberl A et al (2012) Immunadsorption zur Eskalation der Schubtherapie bei MS. Aktuelle Neurol 39:174–179Google Scholar
  43. 43.
    Schimrigk S, Faiss J, Köhler W et al (2016) Escalation therapy of steroid refractory multiple sclerosis relapse with tryptophan immunoadsorption – observational multicenter study with 147 patients. Eur Neurol 75:300–306PubMedGoogle Scholar
  44. 44.
    Trebst C, Bronzlik P, Kielstein J et al (2012) Immunoadsorption therapy for steroid-unresponsive relapses in patients with multiple sclerosis. Blood Purif 33:1–6PubMedGoogle Scholar
  45. 45.
    De Masi R, Accoto S, Orlando S et al (2015) Dramatic recovery of steroid-refractory relapsed multiple sclerosis following fingolimod discontinuation using selective immune adsorption. BMC Neurol 15:125PubMedPubMedCentralGoogle Scholar
  46. 46.
    Dorst J, Kunz M, Vintonyak O, Senel M, Rau D, Fathinia P, Hansel A, Endruhn S, Fangerau T, Taranu D, Gastl R, Jesse S, Schuster J, Ludolph AC, Tumani H (2016) Immunoadsorption with regenerating columns in treatment of steroid refractory relapse in multiple sclerosis and optic neuritis. J Mult Scler (Foster City) 3:2.  https://doi.org/10.4172/2376-0389.1000178 CrossRefGoogle Scholar
  47. 47.
    Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF)-Ständige Kommission Leitlinien (2018) S2e Leitlinie: Optikusneuritis; AWMF-Register Nr. 045-010; Stand 31.03.2018. https://www.awmf.org/leitlinien/detail/ll/045-010.html. Zugegriffen: 12. Sept. 2018Google Scholar
  48. 48.
    Sutton D, Nair R, Rock G et al (1989) Complications of plasma exchange. Transfusion 29(2):121–127Google Scholar
  49. 49.
    Hellwig K, Haghikia A, Rockhoff M et al (2012) Multiple sclerosis and pregnancy: experience from a nationwide database in Germany. Ther Adv Neurol Disord 5(5):247–253PubMedPubMedCentralGoogle Scholar
  50. 50.
    Park-Wyllie L, Mazzotta P, Pastuszak A et al (2000) Birth defects after maternal exposure to corticosteroids: prospective cohort study and meta-analysis of epidermiological studies. Teratology 62(6):385–392PubMedGoogle Scholar
  51. 51.
    Smets I, Deun L, Bohyn C et al (2017) Corsticosteroids in the management of acute multiple sclerosis exacerbations. Acta Neurol Belg.  https://doi.org/10.1007/s13760-017-0772-0 CrossRefPubMedGoogle Scholar
  52. 52.
    Gur C, Diav-Citrin O, Shechtman S et al (2004) Pregnancy outcome after first trimester exposure to corticosteroids: a prospective controlled study. Reprod Toxicol 18(1):93–101PubMedGoogle Scholar
  53. 53.
    Hoffmann F, Kraft A, Heigl F et al (2018) Tryptophan immunoadsorption during pregnancy and breatsfeeding in patients with acute relapse of multiple sclerosis and neuromyelitis optica. Ther Adv Neurol Disord 11:1–12Google Scholar
  54. 54.
    Marson P, Gervasi MT, Tison T et al (2015) Therapeutic apheresis in pregnancy: general considerations and current practice. Transfus Apher Sci 53:256–261PubMedGoogle Scholar
  55. 55.
    Narula S, Hopkins S, Banwell B (2015) Treatment of pediatric multiple sclerosis. Curr Treat Options Neurol.  https://doi.org/10.1007/s11940-014-0336-z CrossRefPubMedGoogle Scholar
  56. 56.
    Waldman A, Ghezzi A, Bar-Or A, Mikaeloff Y, Tardieu M, Banwell B (2014) Multiple sclerosis in children: an update on clinical diagnosis, therapeutic strategies, and research. Lancet Neurol 13(9):936–948PubMedPubMedCentralGoogle Scholar
  57. 57.
    Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF)-Ständige Kommission Leitlinien (2016) S1 Leitlinie: Pädiatrische Multiple Sklerose; AWMF-Register Nr. 022/014 Stand 01/2016. http://www.awmf.org/uploads/tx_szleitlinien/022-014l_S1_Multiple-Sklerose_Kinderalter_2016-02.pdf. Zugegriffen: 3. März 2016Google Scholar
  58. 58.
    Koziolek M, Mühlhausen J, Friede T et al (2013) Therapeutic apheresis in pediatric patients with acute CNS inflammatory demyelinating disease. Blood Purif 36:92–97PubMedGoogle Scholar
  59. 59.
    Paglialonga F, Schmitt C, Shroff R et al (2015) Indications, technique, and outcome of therapeutic apheresis in European pediatric nephrology units. Pediatr Nephrol 30(1):103–111PubMedGoogle Scholar
  60. 60.
    Clifford DB, De Luca A, Simpson DM et al (2010) Natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: lessons from 28 cases. Lancet Neurol 4:438–446Google Scholar
  61. 61.
    Wenning W, Haghikia A, Laubenberger J et al (2009) Treatment of progressive mulitfocal leukoencephalopathy assoziated with natalizumab. N Engl J Med 361(11):1075–1108PubMedGoogle Scholar
  62. 62.
    Landi D, Rossi N, Zagalia S et al (2017) No evidence of beneficial effects of plasmapheresis in natalizumab-associated PML. Neurology 88:1144–1152PubMedGoogle Scholar
  63. 63.
    Pitarokoili K, Gold R (2018) Ziel der PML-Behandlung: die immunologische Balance erhalten. Kommentar. Info Neurol Psychiatr 20(1):18Google Scholar
  64. 64.
    Jarius S, Wildemann B, Paul F (2014) Neuromyelitis optica: clinical features, immunopathogenesis and treatment. Clin Exp Immunol 176:149–164PubMedPubMedCentralGoogle Scholar
  65. 65.
    Kremer L, Mealy M, Jacob A et al (2014) Brainstem manifestations in neuromyelitis optica: a multicenter study of 258 patients. Mult Scler 20:843–847PubMedGoogle Scholar
  66. 66.
    Lennon VA, Wingerchuk DM, Kryzer TJ et al (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364:2106–2112PubMedGoogle Scholar
  67. 67.
    Jarius S, Wildemann B (2010) AQP4 antibodies in neuromyelitis optica: diagnostic and pathogenetic relevance. Nat Rev Neurol 6:383–392PubMedGoogle Scholar
  68. 68.
    Zekeridou A, Lennon VA (2015) Aquaporin-4 autoimmunity. Neurol Neuroimmunol Neuroinflamm 2:e110PubMedPubMedCentralGoogle Scholar
  69. 69.
    Wingerchuk DM, Banwell B, Bennett JL et al (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85:177–189PubMedPubMedCentralGoogle Scholar
  70. 70.
    Mader S, Gredler V, Schanda K et al (2011) Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation 8:184PubMedPubMedCentralGoogle Scholar
  71. 71.
    Zamvil SS, Slavin AJ (2015) Does MOG Ig-positive AQP4-seronegative opticospinal inflammatory disease justify a diagnosis of NMO spectrum disorder? Neurol Neuroimmunol Neuroinflamm 2:e62PubMedPubMedCentralGoogle Scholar
  72. 72.
    Jarius S, Paul F, Aktas O et al (2018) MOG encephalomyelitis: international recommendations on diagnosis and antibody testing. J Neuroinflammation 15(1):134PubMedPubMedCentralGoogle Scholar
  73. 73.
    Sellner J, Boggild M, Clanet M et al (2010) EFNS guidelines on diagnosis and management of neuromyelitis optica. Eur J Neurol 17:1019–1032PubMedGoogle Scholar
  74. 74.
    Trebst C, Berthele A, Jarius S et al (2011) Diagnostik und Therapie der Neuromyelitis optica: Konsensusempfehlungen der Neuromyelitis optica Studiengruppe. Nervenarzt.  https://doi.org/10.1007/s00115-010-3192-4 CrossRefPubMedGoogle Scholar
  75. 75.
    Trebst C, Jarius S, Berthele A et al (2014) Update on the diagnosis and treatment of neuromyelitis optica: recommendations of the Neuromyelitis Optica Study Group (NEMOS). J Neurol 261:1–16PubMedGoogle Scholar
  76. 76.
    Bonnan M, Cabre P (2012) Plasma exchange in severe attacks of neuromyelitis optica. Mult Scler Int.  https://doi.org/10.1155/2012/787630 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Takeshita Y, Obermeier B, Cotleur AC et al (2016) Effects of neuromyelitis optica-IgG at the blood brain barrier in vitro. Neurol Neuroimmunol Neuroinflamm 4(1):e311PubMedPubMedCentralGoogle Scholar
  78. 78.
    Jarius S, Ruprecht K, Wildemann B et al (2012) Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: a multicentre study of 175 patients. J Neuroinflammation 9:14PubMedPubMedCentralGoogle Scholar
  79. 79.
    Kleiter I, Gold R (2016) Present and future therapies in neuromyelitis optica spectrum disorders. Neurotherapeutics 13:70–83PubMedGoogle Scholar
  80. 80.
    Aguilera AJ, Carlow TJ, Smith KJ, Simon TL (1985) Lymphocytaplasmapheresis in Devic’s syndrome. Transfusion 25:5456Google Scholar
  81. 81.
    Konttinen YT, Kinnunen E, von Bonsdorff M et al (1987) Acute transverse myelopathy successfully treated with plasmapheresis and prednisone in a patient with primary Sjogren’s syndrome. Arthritis Rheum 30:339–344PubMedGoogle Scholar
  82. 82.
    Watanabe S, Nakashima I, Misu T et al (2007) Therapeutic efficacy of plasma exchange in NMO-IgG-positive patients with neuromyelitis optica. Mult Scler 13:128–132PubMedGoogle Scholar
  83. 83.
    Bonnan M, Valentino R, Olindo S, Mehdaoui H, Smadja D, Cabre P (2009) Plasma exchange in severe spinal attacks associated with neuromyelitis optica spectrum disorder. Mult Scler 15:487–492PubMedGoogle Scholar
  84. 84.
    Merle H, Olindo S, Jeannin S et al (2012) Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica. Arch Ophthalmol 130:858–862PubMedGoogle Scholar
  85. 85.
    Magana SM, Keegan BM, Weinshenker BG et al (2011) Beneficial plasma exchange response in central nervous system inflammatory demyelination. Arch Neurol 68:870–878PubMedPubMedCentralGoogle Scholar
  86. 86.
    Lim YM, Pyun SY, Kang BH, Kim J, Kim KK (2013) Factors associated with the effectiveness of plasma exchange for the treatment of NMO-IgG-positive neuromyelitis optica spectrum disorders. Mult Scler 19:1216–1218PubMedGoogle Scholar
  87. 87.
    Abboud H, Petrak A, Mealy M, Sasidharan S, Siddique L, Levy M (2016) Treatment of acute relapses in neuromyelitis optica: steroids alone versus steroids plus plasma exchange. Mult Scler 22:185–192PubMedGoogle Scholar
  88. 88.
    Kim SH, Kim W, Huh SY, Lee KY, Jung IJ, Kim HJ (2013) Clinical efficacy of plasmapheresis in patients with neuromyelitis optica spectrum disorder and effects on circulating anti-aquaporin-4 antibody levels. J Clin Neurol 9:3642Google Scholar
  89. 89.
    Deschamps R, Gueguen A, Parquet N et al (2016) Plasma exchange response in 34 patients with severe optic neuritis. J Neurol 263:883–887PubMedGoogle Scholar
  90. 90.
    Kleiter I, Gahlen A, Borisow N et al (2016) Neuromyelitis optica: evaluation of 871 attacks and 1153 treatment courses. Ann Neurol 79:206–216PubMedGoogle Scholar
  91. 91.
    Llufriu S, Castillo J, Blanco Y et al (2009) Plasma exchange for acute attacks of CNS demyelination: predictors of improvement at 6 months. Neurology 73:949–953PubMedGoogle Scholar
  92. 92.
    Bonnan M, Valentino R, Debeugny S et al (2018) Short delay to initiate plasma exchange is the strongest predictor of outcome in severe attacks of NMO spectrum disorders. J Neurol Neurosurg Psychiatry 89:346–351PubMedGoogle Scholar
  93. 93.
    Jurewicz A, Selmaj K (2015) Relapse of neuromyelitis optica during pregnancy – treatment options and literature review. Clin Neurol Neurosurg 130:159–161PubMedGoogle Scholar
  94. 94.
    Rubio Tabares J, Amaya Gonzalez PF (2016) Plasma exchange therapy for a severe relapse of Devic’s disease in a pregnant woman: a case report and concise review. Clin Neurol Neurosurg 148:88–90PubMedGoogle Scholar
  95. 95.
    Kobayashi M, Nanri K, Taguchi T et al (2015) Immunoadsorption therapy for neuromyelitis optica spectrum disorders long after the acute phase. J Clin Apher 30:43–45PubMedGoogle Scholar
  96. 96.
    Faissner S, Nikolayczik J, Chan A et al (2016) Immunoadsorption in patients with neuromyelitis optica spectrum disorder. Ther Adv Neurol Disord 9(4):281–286PubMedPubMedCentralGoogle Scholar
  97. 97.
    Yasuda T, Mikami T, Kawase Y (2015) Efficacy of tryptophan immunoadsorption plasmapheresis for neuromyelitis optica in two cases. Ther Apher Dial 19:411–412PubMedGoogle Scholar
  98. 98.
    Mauch E, Zwanzger J, Hettich R, Fassbender C, Klingel R, Heigl F (2011) Immunoadsorption for steroid-unresponsive multiple sclerosis-relapses: clinical data of 14 patients. Nervenarzt 82:1590–1595PubMedGoogle Scholar
  99. 99.
    Kohsaka M, Tanaka M, Tahara M, Araki Y, Mori S, Konishi T (2010) A case of subacute myelitis with anti-aquaporin 4 antibody after thymectomy for myasthenia gravis: review of autoimmune diseases after thymectomy. Rinsho Shinkeigaku 50:111–113PubMedGoogle Scholar
  100. 100.
    Arai M (2009) Relapsing transverse myelitis with anti-aquaporin 4 seropositivity: possible beneficial effects of ciclosporin. Rinsho Shinkeigaku 49:48–51PubMedGoogle Scholar
  101. 101.
    Miyamoto K, Kusunoki S (2009) Intermittent plasmapheresis prevents recurrence in neuromyelitis optica. Ther Apher Dial 13:505–508PubMedGoogle Scholar
  102. 102.
    Khatri BO, Kramer J, Dukic M, Palencia M, Verre W (2012) Maintenance plasma exchange therapy for steroid-refractory neuromyelitis optica. J Clin Apher 27:183–192PubMedGoogle Scholar
  103. 103.
    Kleiter I, Gahlen A, Borisow N et al (2018) Apheresis therapies for NMOSD attacks: a retrospective study of 207 therapeutic interventions. Neurol Neuroimmunol Neuroinflamm 5:e504.  https://doi.org/10.1212/NXI.0000000000000504 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Graus F et al (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 15(4):391–404PubMedPubMedCentralGoogle Scholar
  105. 105.
    Heine J, Prüss H, Bartsch T, Ploner CJ, Paul F, Finke C (2015) Imaging of autoimmune encephalitis – relevance for clinical practice and hippocampal function. Neuroscience 309:68–83PubMedGoogle Scholar
  106. 106.
    Dalmau J et al (2008) Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 7(12):1091–1098PubMedPubMedCentralGoogle Scholar
  107. 107.
    Titulaer MJ et al (2013) Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis: an observational cohort study. Lancet Neurol 12(2):157–165PubMedPubMedCentralGoogle Scholar
  108. 108.
    Kreye J et al (2016) Human cerebrospinal fluid monoclonal N‑methyl-D-aspartate receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain.  https://doi.org/10.1093/brain/aww208 CrossRefPubMedGoogle Scholar
  109. 109.
    Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R (2011) Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 10(1):63–74PubMedPubMedCentralGoogle Scholar
  110. 110.
    Heine J et al (2016) Immunoadsorption or plasma exchange in the treatment of autoimmune encephalitis: a pilot study. J Neurol 263(12):2395–2402PubMedGoogle Scholar
  111. 111.
    Dogan Onugoren M et al (2016) Immunoadsorption therapy in autoimmune encephalitides. Neurol Neuroimmunol Neuroinflamm 3(2):e207–e207PubMedPubMedCentralGoogle Scholar
  112. 112.
    DeSena AD et al (2015) Intravenous methylprednisolone versus therapeutic plasma exchange for treatment of anti-nmethyl-d-aspartate receptor antibody encephalitis: a retrospective review. J Clin Apher 30(4):212–216PubMedGoogle Scholar
  113. 113.
    Pham HP, Daniel-Johnson JA, Stotler BA, Stephens H, Schwartz J (2011) Therapeutic plasma exchange for the treatment of anti-NMDA receptor encephalitis. J Clin Apher 26(6):320–325PubMedGoogle Scholar
  114. 114.
    Köhler W et al (2014) Tryptophan immunoadsorption for the treatment of autoimmune encephalitis. Eur J Neurol 22:203–206PubMedGoogle Scholar
  115. 115.
    Mazzi G, De Roia D, Cruciatti B, Matà S, Catapano R (2008) Plasma exchange for anti GAD associated non paraneoplastic limbic encephalitis. Transfus Apher Sci 39(3):229–233PubMedGoogle Scholar
  116. 116.
    Ariño H et al (2014) Cerebellar ataxia and glutamic acid decarboxylase antibodies: immunologic profile and long-term effect of immunotherapy. JAMA Neurol 71(8):1009–1016PubMedPubMedCentralGoogle Scholar
  117. 117.
    Smith JH (2011) N‑methyl-D-aspartate receptor autoimmune encephalitis presenting with opsoclonus-myoclonus. Arch Neurol 68(8):1069PubMedGoogle Scholar
  118. 118.
    Ehrlich S et al (2012) Therapeutische Apherese bei autoimmuner Enzephalitis. Nervenarzt 84(4):498–507Google Scholar
  119. 119.
    Chan SHS, Wong VCN, Fung C, Dale RC, Vincent A (2010) Anti-NMDA receptor encephalitis with atypical brain changes on MRI. Pediatr Neurol 43(4):274–278PubMedGoogle Scholar
  120. 120.
    Vincent A et al (2004) Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 127(Pt 3):701–712PubMedGoogle Scholar
  121. 121.
    Jaben EA, Winters JL (2012) Plasma exchange as a therapeutic option in patients with neurologic symptoms due to antibodies to voltage-gated potassium channels: a report of five cases and review of the literature. J Clin Apher 27(5):267–273PubMedGoogle Scholar
  122. 122.
    Martin IW, Martin C‑LB, Dunbar NM, Lee SL, Szczepiorkowski ZM (2016) Therapeutic plasma exchange as a steroid-sparing therapy in a patient with limbic encephalitis due to antibodies to voltage-gated potassium channels. J Clin Apher 31(1):63–65PubMedGoogle Scholar
  123. 123.
    Shahani L (2015) Steroid unresponsive anti-NMDA receptor encephalitis during pregnancy successfully treated with plasmapheresis. Case Rep.  https://doi.org/10.1136/bcr-2014-208823 CrossRefGoogle Scholar
  124. 124.
    Tselmin S, Julius U, Bornstein SR, Hohenstein B (2017) Low rate of infectious complications following immunoadsorption therapy without regular substitution of intravenous immunoglobulins. Atheroscler Suppl.  https://doi.org/10.1016/j.atherosclerosissup.2017.05.010 CrossRefPubMedGoogle Scholar
  125. 125.
    Rickman OB, Parisi JE, Yu Z, Lennon VA, Vernino S (2000) Fulminant autoimmune cortical encephalitis associated with thymoma treated with plasma exchange. Mayo Clin Proc 75(12):1321–1326PubMedGoogle Scholar
  126. 126.
    Batchelor TT, Platten M, Hochberg FH (1998) Immunoadsorption therapy for paraneoplastic syndromes. J Neurooncol 40(2):131–136PubMedGoogle Scholar
  127. 127.
    Mori M, Kuwabara S, Yoshiyama M, Kanesaka T, Ogata T, Hattori T (2002) Successful immune treatment for nonparaneoplastic limbic encephalitis. J Neurol Sci 201(1–2):85–88PubMedGoogle Scholar
  128. 128.
    Pevzner A, Schoser B, Peters K et al (2012) Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol 259:427–435PubMedGoogle Scholar
  129. 129.
    Gasperi C, Melms A, Schoser B et al (2014) Anti-agrin autoantibodies in myasthenia gravis. Neurology 82:1976–1983PubMedGoogle Scholar
  130. 130.
    Otsuka K, Ito M, Ohkawara B et al (2015) Collagen Q and anti-MuSK autoantibodies competitively suppress agrin/LRP4/MuSK signaling. Sci Rep 5:1392Google Scholar
  131. 131.
    Cortes-Vicente E, Gallardo E, Martinez MA et al (2016) Clinical characteristics of patients with double-seronegative myasthenia gravis and antibodies to cortactin. JAMA Neurol 73:1099–1104PubMedGoogle Scholar
  132. 132.
    Gilhus NE, Verschuur JJ (2015) Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 14:1023–1036PubMedGoogle Scholar
  133. 133.
    Schoser B, Eymard B, Datt J, Mantegazza R (2017) Lambert-Eaton myasthenic syndrome (LEMS): a rare autoimmune presynaptic disorder often associated with cancer. J Neurol.  https://doi.org/10.1007/s00415-017-8541-9 CrossRefPubMedGoogle Scholar
  134. 134.
    Wiendl H (2012) Diagnostik und Therapie der Myasthenia gravis und des Lambert-Eaton-Syndroms. In: Diener, Weimar (Hrsg) Leitlinien für Diagnostik und Therapie in der Neurologie der Deutschen Gesellschaft für Neurologie. Thieme, Stuttgart, New York (Zuletzt überprüft am: 20.03.2018; (Zugriff am 21.08.2018) URL:http://www.dgn.org/)Google Scholar
  135. 135.
    Haas M, Mayr N, Zeitlhofer J et al (2002) Long-term treatment of myasthenia greavis with immunoadsorption. J Clin Apher 17:84–87PubMedGoogle Scholar
  136. 136.
    Klehmet J, Ohlraun S, Meisel A (2014) Myasthenia gravis und Schwangerschaft. Aktuelle Neurol 41:447–453Google Scholar
  137. 137.
    Wagner S, Janzen RW, Mohs C et al (2008) Langzeitbehandlung der therapierefraktären Myasthenia gravis mittels Immunadsorption. Dtsch Med Wochenschr 133:2377–2382PubMedGoogle Scholar
  138. 138.
    Barth D, Nouri MN, Ng E et al (2011) Comparison of IVIg and PLEX in patients with myasthenia gravis. Neurology 76(23):2017–2023PubMedPubMedCentralGoogle Scholar
  139. 139.
    Yamada C, Pham HP, Wu Y et al (2017) Report of the ASFA apheresis registry on muscle specific kinase antibody positive myasthenia gravis. J Clin Apher 32(1):5–11PubMedGoogle Scholar
  140. 140.
    Antozzi C (2013) Immunoadsorption in patients with autoimmune ion channel disorders of the peripheral nervous system. Atheroscler Suppl 14:219–222PubMedGoogle Scholar
  141. 141.
    Sauter M, Bender A, Heller F, Sitter T (2010) A case report of the efficient reduction of calcium channel antibodies by tryptophan ligand immunoadsorption in a patient with Lambert-Eaton syndrome. Ther Apher Dial 14:364–367PubMedGoogle Scholar
  142. 142.
    Toyka K, Drachman D, Griffin D et al (1977) Myasthenia gravis. Study of humoral immune mechanisms by passive transfer to mice. N Engl J Med 296:125–131PubMedGoogle Scholar
  143. 143.
    Henze T, Janzen RW, Schumm F et al (2010) Immuntherapie bei Myasthenia gravis und Lambert-Eaton-Syndrom. Teil 2: Intravenöse Immunglobuline und Plasmaaustauschverfahren. Aktuelle Neurol 37:518–523Google Scholar
  144. 144.
    Skeie GO, Apostolski S, Evoli A et al (2010) Guidelines for treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol 17:893–902PubMedGoogle Scholar
  145. 145.
    Hohenstein B, Passauer J, Ziemssen T, Julius U (2015) Immunoadsorption with regenerating systems in neurological disorders – a single center experience. Atheroscler Suppl 18:119–123PubMedGoogle Scholar
  146. 146.
    Baggi F, Ubiali F, Nava S et al (2008) Effect of IgG immunoadsorption on serum cytokines in MG and LEMS patients. J Neuroimmunol 201–202:104–110PubMedGoogle Scholar
  147. 147.
    Bucka C, Köhler W, Hertel G et al (1993) Immunadsorption bei Myasthenia gravis. Wirkungsweise, immunologische Parameter und klinischer Verlauf. Aktuelle Neurol 20:207–213Google Scholar
  148. 148.
    Zeitler H, Ulrich-Merzenich G, Hoffmann L et al (2006) Long-term effects of a multimodal approach including immunoadsorption for the treatment of myasthenic crisis. Artif Organs 30:597–605PubMedGoogle Scholar
  149. 149.
    Sanders D, Wolfe G, Benatar M et al (2016) International consensus guidance for management of myasthenia gravis. Neurology 87:419–425PubMedPubMedCentralGoogle Scholar
  150. 150.
    Gold R, Hohlfeld R, Toyka KV (2008) Progress in the treatment of myasthenia gravis. Ther Adv Neurol Disord 1(2):36–51PubMedPubMedCentralGoogle Scholar
  151. 151.
    Liew WK, Powell CA, Sloan SR et al (2014) Comparison of plasmapheresis and intravenous immunoglobulin as maintenance therapies for juvenile myasthenia gravis. JAMA Neurol 71:575–580PubMedGoogle Scholar
  152. 152.
    Della Marina A, Tripp H, Lutz S, Schara U (2014) Juvenile myasthenia gravis: recommendations for diagnostic approaches and treatment. Neuropediatrics 45:75–83PubMedGoogle Scholar
  153. 153.
    Koessler J, Kobsar A, Kuhn S et al (2015) The effect of immunoadsorption with the immusorba TR-350 on coagulation compared to plasma exchange. Vox Sang 108:46–21PubMedGoogle Scholar
  154. 154.
    Köhler W, Sieb J (2012) Myasthenia gravis. UNI-MED, BremenGoogle Scholar
  155. 155.
    Trikha I, Singh S, Goyal V et al (2007) Comparative efficacy of low dose, daily versus alternate day plasma exchange in severe myasthenia gravis. J Neurol 254:989–995PubMedGoogle Scholar
  156. 156.
    Koller H, Kieseier BC, Jander S, Hartung HP (2005) Chronic inflammatory demyelinating polyneuropathy. N Engl J Med 352:1343–1356PubMedGoogle Scholar
  157. 157.
    Goodfellow JA, Willison HJ (2016) Guillain-Barre syndrome: a century of progress. Nat Rev Neurol 12:723–731PubMedGoogle Scholar
  158. 158.
    Alter M (1990) The epidemiology of Guillain-Barre syndrome. Ann Neurol 27(Suppl):S7–S12PubMedGoogle Scholar
  159. 159.
    Chio A, Cocito D, Leone M, Giordana MT, Mora G, Mutani R, The Piemonte and Valle d’Aosta Register for Guillain-Barre Syndrome (2003) Guillain-Barre syndrome: a prospective, population-based incidence and outcome survey. Neurology 60:1146–1150PubMedGoogle Scholar
  160. 160.
    Raphael JC, Chevret S, Hughes RA, Annane D (2012) Plasma exchange for Guillain-Barre syndrome. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd001798.pub2 CrossRefPubMedGoogle Scholar
  161. 161.
    Chad DA, Hammer K, Sargent J (1986) Slow resolution of multifocal weakness and fasciculation: a reversible motor neuron syndrome. Neurology 36:1260–1263PubMedGoogle Scholar
  162. 162.
    Roth G, Rohr J, Magistris MR, Ochsner F (1986) Motor neuropathy with proximal multifocal persistent conduction block, fasciculations and myokymia. Evolution to tetraplegia. Eur Neurol 25:416–423PubMedGoogle Scholar
  163. 163.
    PNS-Task-Force (2010) Joint Task Force of the EFNS and the PNS: European Federation of Neurological Societies/Peripheral Nerve Society guideline on management of multifocal motor neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society – first revision. J Peripher Nerv Syst 15:295–301Google Scholar
  164. 164.
    Sommer C et al (2018) Therapie akuter und chronischer immunvermittelter Neuropathien und Neuritiden, S2eLeitlinie. In: Deutsche Gesellschaft für Neurologie (Hrsg) Leitlinien für Diagnostik und Therapie in der Neurologie (www.dgn.org/leitlinien abgerufen am 05.09.2018)Google Scholar
  165. 165.
    Cocito D, Paolasso I, Antonini G, Benedetti L, Briani C, Comi C, Fazio R, Jann S, Mata S, Mazzeo A, Sabatelli M, Nobile-Orazio E, The Italian Network for CIDP Register (2010) A nationwide retrospective analysis on the effect of immune therapies in patients with chronic inflammatory demyelinating polyradiculoneuropathy. Eur J Neurol 17:28994Google Scholar
  166. 166.
    Hughes RA, Mehndiratta MM (2015) Corticosteroids for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd002062.pub3 CrossRefPubMedGoogle Scholar
  167. 167.
    Lopate G, Pestronk A, Al-Lozi M (2005) Treatment of chronic inflammatory demyelinating polyneuropathy with high-dose intermittent intravenous methylprednisolone. Arch Neurol 62:249–254PubMedGoogle Scholar
  168. 168.
    Muley SA, Kelkar P, Parry GJ (2008) Treatment of chronic inflammatory demyelinating polyneuropathy with pulsed oral steroids. Arch Neurol 65:1460–1464PubMedGoogle Scholar
  169. 169.
    van Schaik IN, Eftimov F, van Doorn PA, Brusse E, van den Berg LH, van der Pol WL, Faber CG, van Oostrom JC, Vogels OJ, Hadden RD, Kleine BU, van Norden AG, Verschuuren JJ, Dijkgraaf MG, Vermeulen M (2010) Pulsed high-dose dexamethasone versus standard prednisolone treatment for chronic inflammatory demyelinating polyradiculoneuropathy (PREDICT study): a double-blind, randomised, controlled trial. Lancet Neurol 9:245–253PubMedGoogle Scholar
  170. 170.
    Eftimov F, Winer JB, Vermeulen M, de Haan R, van Schaik IN (2013) Intravenous immunoglobulin for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd001797.pub3 CrossRefPubMedGoogle Scholar
  171. 171.
    Hughes RA, Donofrio P, Bril V, Dalakas MC, Deng C, Hanna K, Hartung HP, Latov N, Merkies IS, van Doorn PA, I. C. E. Study Group (2008) Intravenous immune globulin (10 % caprylate-chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomised placebocontrolled trial. Lancet Neurol 7:136–144PubMedGoogle Scholar
  172. 172.
    Nobile-Orazio E, Cocito D, Jann S, Uncini A, Beghi E, Messina P, Antonini G, Fazio R, Gallia F, Schenone A, Francia A, Pareyson D, Santoro L, Tamburin S, Macchia R, Cavaletti G, Giannini F, Sabatelli M, I. M. C. Trial Group (2012) Intravenous immunoglobulin versus intravenous methylprednisolone for chronic inflammatory demyelinating polyradiculoneuropathy: a randomised controlled trial. Lancet Neurol 11:493–502PubMedGoogle Scholar
  173. 173.
    Nobile-Orazio E, Cocito D, Jann S, Uncini A, Messina P, Antonini G, Fazio R, Gallia F, Schenone A, Francia A, Pareyson D, Santoro L, Tamburin S, Cavaletti G, Giannini F, Sabatelli M, Beghi E, I. M. C. Trial Group (2015) Frequency and time to relapse after discontinuing 6‑month therapy with IVIg or pulsed methylprednisolone in CIDP. J Neurol Neurosurg Psychiatry 86:729–734PubMedGoogle Scholar
  174. 174.
    Lehmann HC, Hartung HP, Hetzel GR, Stuve O, Kieseier BC (2006) Plasma exchange in neuroimmunological disorders: part 2. Treatment of neuromuscular disorders. Arch Neurol 63:1066–1071PubMedGoogle Scholar
  175. 175.
    Hughes RA, Swan AV, van Doorn PA (2014) Intravenous immunoglobulin for Guillain-Barre syndrome. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd002063.pub6 CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Gold R, Stangel M, Dalakas MC (2007) Drug insight: the use of intravenous immunoglobulin in neurology-therapeutic considerations and practical issues. Nat Clin Pract Neurol 3:36–44PubMedGoogle Scholar
  177. 177.
    Stork AC, Lunn MP, Nobile-Orazio E, Notermans NC (2015) Treatment for IgG and IgA paraproteinaemic neuropathy. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd005376.pub3 CrossRefPubMedGoogle Scholar
  178. 178.
    Gorson KC, Ropper AH, Weinberg DH, Weinstein R (2002) Efficacy of intravenous immunoglobulin in patients with IgG monoclonal gammopathy and polyneuropathy. Arch Neurol 59:766–772PubMedGoogle Scholar
  179. 179.
    Lunn MP, Nobile-Orazio E (2012) Immunotherapy for IgM anti-myelin-associated glycoprotein paraproteinassociated peripheral neuropathies. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd002827.pub3 CrossRefPubMedGoogle Scholar
  180. 180.
    Joint Task Force of the EFNS and the PNS (2010) European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of paraproteinemic demyelinating neuropathies. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society – first revision. J Peripher Nerv Syst 15:185–195Google Scholar
  181. 181.
    Dalakas MC, Rakocevic G, Salajegheh M, Dambrosia JM, Hahn AF, Raju R, McElroy B (2009) Placebocontrolled trial of rituximab in IgM anti-myelin-associated glycoprotein antibody demyelinating neuropathy. Ann Neurol 65:286–293PubMedGoogle Scholar
  182. 182.
    Leger JM, Viala K, Nicolas G, Creange A, Vallat JM, Pouget J, Clavelou P, Vial C, Steck A, Musset L, Marin B, Rimag Study Group (2013) Placebo-controlled trial of rituximab in IgM anti-myelin-associated glycoprotein neuropathy. Neurology 80:2217–2225PubMedPubMedCentralGoogle Scholar
  183. 183.
    Hummel HD, Rath JC, Wiendl H, Hetzel W, Bargou RC, Toyka KV, Sommer C, Einsele H, Topp MS (2011) Auto-SCT in severe paraproteinemic neuropathy. Bone Marrow Transplant 46:457–459PubMedGoogle Scholar
  184. 184.
    Lee YC, Came N, Schwarer A, Day B (2002) Autologous peripheral blood stem cell transplantation for peripheral neuropathy secondary to monoclonal gammopathy of unknown significance. Bone Marrow Transplant 30:53–56PubMedGoogle Scholar
  185. 185.
    Mehndiratta MM, Hughes RA, Pritchard J (2015) Plasma exchange for chronic inflammatory demyelinating polyradiculoneuropathy. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd003906.pub4 CrossRefPubMedGoogle Scholar
  186. 186.
    Dyck PJ, Daube J, O’Brien P, Pineda A, Low PA, Windebank AJ, Swanson C (1986) Plasma exchange in chronic inflammatory demyelinating polyradiculoneuropathy. N Engl J Med 314:461–465PubMedGoogle Scholar
  187. 187.
    Hahn AF, Bolton CF, Pillay N, Chalk C, Benstead T, Bril V, Shumak K, Vandervoort MK, Feasby TE (1996) Plasma-exchange therapy in chronic inflammatory demyelinating polyneuropathy. A double-blind, sham-controlled, cross-over study. Brain 119(Pt 4):1055–1066PubMedGoogle Scholar
  188. 188.
    Dyck PJ, Litchy WJ, Kratz KM, Suarez GA, Low PA, Pineda AA, Windebank AJ, Karnes JL, O’Brien PC (1994) A plasma exchange versus immune globulin infusion trial in chronic inflammatory demyelinating polyradiculoneuropathy. Ann Neurol 36:838–845PubMedGoogle Scholar
  189. 189.
    Choudhary PP, Hughes RA (1995) Long-term treatment of chronic inflammatory demyelinating polyradiculoneuropathy with plasma exchange or intravenous immunoglobulin. QJM 88:493–502PubMedGoogle Scholar
  190. 190.
    Pollard JD, McLeod JG, Gatenby P, Kronenberg H (1983) Prediction of response to plasma exchange in chronic relapsing polyneuropathy. A clinico-pathological correlation. J Neurol Sci 58:269–287PubMedGoogle Scholar
  191. 191.
    Lieker I, Slowinski T, Harms L, Hahn K, Klehmet J (2017) A prospective study comparing tryptophan immunoadsorption with therapeutic plasma exchange for the treatment of chronic inflammatory demyelinating polyneuropathy. J Clin Apher.  https://doi.org/10.1002/jca.21546 CrossRefPubMedGoogle Scholar
  192. 192.
    Galldiks N, Burghaus L, Dohmen C, Teschner S, Pollok M, Leebmann J, Frischmuth N, Hollinger P, Nazli N, Fassbender C, Klingel R, Benzing T, Fink GR, Haupt WF (2011) Immunoadsorption in patients with chronic inflammatory demyelinating polyradiculoneuropathy with unsatisfactory response to first-line treatment. Eur Neurol 66:183–189PubMedGoogle Scholar
  193. 193.
    Raphael JC (1997) Appropriate number of plasma exchanges in Guillain-Barre syndrome. The French Cooperative Group on Plasma Exchange in Guillain-Barre Syndrome. Ann Neurol 41:298–306Google Scholar
  194. 194.
    Abd-Allah SA, Jansen PW, Ashwal S, Perkin RM (1997) Intravenous immunoglobulin as therapy for pediatric Guillain-Barre syndrome. J Child Neurol 12:376–380PubMedGoogle Scholar
  195. 195.
    Abou-Khalil B (2008) Levetiracetam in the treatment of epilepsy. Neuropsychiatr Dis Treat 4:507–523PubMedPubMedCentralGoogle Scholar
  196. 196.
    Bril V, Ilse WK, Pearce R, Dhanani A, Sutton D, Kong K (1996) Pilot trial of immunoglobulin versus plasma exchange in patients with Guillain-Barre syndrome. Neurology 46:100–103PubMedGoogle Scholar
  197. 197.
    Donofrio PD (2003) Immunotherapy of idiopathic inflammatory neuropathies. Muscle Nerve 28:273–292PubMedGoogle Scholar
  198. 198.
    Epstein MA, Sladky JT (1990) The role of plasmapheresis in childhood Guillain-Barre syndrome. Ann Neurol 28:65–69PubMedGoogle Scholar
  199. 199.
    Esperou H, Jars-Guincestre MC, Bolgert F, Raphael JC, Durand-Zaleski I (2000) Cost analysis of plasmaexchange therapy for the treatment of Guillain-Barre syndrome. French Cooperative Group on Plasma Exchange in Guillain-Barre Syndrome. Intensive Care Med 26:1094–1100PubMedGoogle Scholar
  200. 200.
    Hughes RA, Wijdicks EF, Barohn R, Benson E, Cornblath DR, Hahn AF, Meythaler JM, Miller RG, Sladky JT, Stevens JC, The Quality Standards Subcommittee of the American Academy of Neurology (2003) Practice parameter: immunotherapy for Guillain-Barre syndrome: report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 61:736–740PubMedGoogle Scholar
  201. 201.
    Jansen PW, Perkin RM, Ashwal S (1993) Guillain-Barre syndrome in childhood: natural course and efficacy of plasmapheresis. Pediatr Neurol 9:16–20PubMedGoogle Scholar
  202. 202.
    Jones HR (1996) Childhood Guillain-Barre syndrome: clinical presentation, diagnosis, and therapy. J Child Neurol 11:4–12PubMedGoogle Scholar
  203. 203.
    McKhann GM, Griffin JW, Cornblath DR, Mellits ED, Fisher RS, Quaskey SA (1988) Plasmapheresis and Guillain-Barre syndrome: analysis of prognostic factors and the effect of plasmapheresis. Ann Neurol 23:347–353PubMedGoogle Scholar
  204. 204.
    Osterman PO, Fagius J, Lundemo G, Pihlstedt P, Pirskanen R, Siden A, Safwenberg J (1984) Beneficial effects of plasma exchange in acute inflammatory polyradiculoneuropathy. Lancet 2:1296–1299PubMedGoogle Scholar
  205. 205.
    Vallee L, Dulac O, Nuyts JP, Leclerc F, Vamecq J (1993) Intravenous immune globulin is also an efficient therapy of acute Guillain-Barre syndrome in affected children. Neuropediatrics 24:235–236PubMedGoogle Scholar
  206. 206.
    Yuki N, Tagawa Y, Hirata K (1998) Minimal number of plasma exchanges needed to reduce immunoglobulin in Guillain-Barre syndrome. Neurology 51:875–877PubMedGoogle Scholar
  207. 207.
    McKhann GM (1985) Plasmapheresis and acute Guillain-Barre syndrome. The Guillain-Barre syndrome Study Group. Neurology 35:1096–1104Google Scholar
  208. 208.
    van der Meche FG, Schmitz PI (1992) A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain-Barre syndrome. Dutch Guillain-Barre Study Group. N Engl J Med 326:1123–1129PubMedGoogle Scholar
  209. 209.
    PSGBS-Group (1997) Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain-Barre syndrome. Plasma Exchange/Sandoglobulin Guillain-Barre Syndrome Trial Group. Lancet 349:225–230Google Scholar
  210. 210.
    Diener HC, Haupt WF, Kloss TM, Rosenow F, Philipp T, Koeppen S, Vietorisz A, Group Study (2001) A preliminary, randomized, multicenter study comparing intravenous immunoglobulin, plasma exchange, and immune adsorption in Guillain-Barre syndrome. Eur Neurol 46:107–109PubMedGoogle Scholar
  211. 211.
    El-Bayoumi MA, El-Refaey AM, Abdelkader AM, El-Assmy MM, Alwakeel AA, El-Tahan HM (2011) Comparison of intravenous immunoglobulin and plasma exchange in treatment of mechanically ventilated children with Guillain Barre syndrome: a randomized study. Crit Care 15:R164PubMedPubMedCentralGoogle Scholar
  212. 212.
    Gurses N, Uysal S, Cetinkaya F, Islek I, Kalayci AG (1995) Intravenous immunoglobulin treatment in children with Guillain-Barre syndrome. Scand J Infect Dis 27:241–243PubMedGoogle Scholar
  213. 213.
    Haupt WF, Rosenow F, van der Ven C, Borberg H, Pawlik G (1997) Sequential treatment of Guillain-Barre syndrome with extracorporeal elimination and intravenous immunoglobulin. Ther Apher 1:55–57PubMedGoogle Scholar
  214. 214.
    Korinthenberg R, Schessl J, Kirschner J, Monting JS (2005) Intravenously administered immunoglobulin in the treatment of childhood Guillain-Barre syndrome: a randomized trial. Pediatr Electron Pages 116:8–14Google Scholar
  215. 215.
    Raphael JC, Chevret S, Harboun M, Jars-Guincestre MC, French Guillain-Barre Syndrome Cooperative Group (2001) Intravenous immune globulins in patients with Guillain-Barre syndrome and contraindications to plasma exchange: 3 days versus 6 days. J Neurol Neurosurg Psychiatry 71:235–238PubMedPubMedCentralGoogle Scholar
  216. 216.
    Galldiks N, Dohmen C, Neveling M, Fink GR, Haupt WF (2009) Selective immune adsorption treatment of severe Guillain Barre syndrome in the intensive care unit. Neurocrit Care 11:317–321PubMedGoogle Scholar
  217. 217.
    Marn Pernat A, Buturovic-Ponikvar J, Svigelj V, Ponikvar R (2009) Guillain-Barre syndrome treated by membrane plasma exchange and/or immunoadsorption. Ther Apher Dial 13:310–313PubMedGoogle Scholar
  218. 218.
    Seta T, Nagayama H, Katsura K, Hamamoto M, Araki T, Yokochi M, Utsumi K, Katayama Y (2005) Factors influencing outcome in Guillain-Barre syndrome: comparison of plasma adsorption against other treatments. Clin Neurol Neurosurg 107:491–496PubMedGoogle Scholar
  219. 219.
    Okamiya S, Ogino M, Ogino Y, Irie S, Kanazawa N, Saito T, Sakai F (2004) Tryptophan-immobilized columnbased immunoadsorption as the choice method for plasmapheresis in Guillain-Barré syndrome. Ther Apher Dial 8:248253Google Scholar
  220. 220.
    Dyck PJ, Low PA, Windebank AJ, Jaradeh SS, Gosselin S, Bourque P, Smith BE, Kratz KM, Karnes JL, Evans BA et al (1991) Plasma exchange in polyneuropathy associated with monoclonal gammopathy of undetermined significance. N Engl J Med 325:1482–1486PubMedGoogle Scholar
  221. 221.
    Stork AC, Lunn MP, Nobile-Orazio E, Notermans NC (2015) Treatment for IgG and IgA paraproteinaemic neuropathy. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd005376.pub3 CrossRefPubMedGoogle Scholar
  222. 222.
    Raphael JC (1987) Efficiency of plasma exchange in Guillain-Barre syndrome: role of replacement fluids. French Cooperative Group on Plasma Exchange in Guillain-Barre syndrome. Ann Neurol 22:753–761Google Scholar
  223. 223.
    Raphael JC (1992) Plasma exchange in Guillain-Barre syndrome: one-year follow-up. French Cooperative Group on Plasma Exchange in Guillain-Barre Syndrome. Ann Neurol 32:94–97Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • W. Köhler
    • 1
    Email author
  • C. G. Bien
    • 2
  • S. Ehrlich
    • 3
  • J. Faiss
    • 4
  • C. Finke
    • 5
  • R. Gold
    • 6
  • A. Günther
    • 7
  • L. Harms
    • 5
  • F. Heigl
    • 8
  • J. Heine
    • 5
  • F. Hoffmann
    • 9
  • R. W. C. Janzen
    • 10
  • G. J. Jungehülsing
    • 11
  • B. Kieseier
    • 12
  • I. Kleiter
    • 13
  • A. Kraft
    • 9
  • F. Paul
    • 5
  • H. Prüß
    • 5
  • S. Schimrigk
    • 14
  • C. Sommer
    • 15
  • M. Stettner
    • 16
  • C. Trebst
    • 17
  • H. Tumani
    • 18
    • 19
  1. 1.Neurologische Klinik und PoliklinikUniversitätsklinikum Leipzig A.ö.R.LeipzigDeutschland
  2. 2.Epilepsie-Zentrum BethelKrankenhaus Mara, Bielefeld und Labor KroneBad SalzuflenDeutschland
  3. 3.Klinik für Neurologie und Neurologische IntensivmedizinFachkrankenhaus Hubertusburg gGmbHWermsdorfDeutschland
  4. 4.Kliniken für Neurologie Lübben und TeupitzAsklepios Fachkliniken Brandenburg GmbHTeupitzDeutschland
  5. 5.Klinik für NeurologieCharité Universitätsmedizin BerlinBerlinDeutschland
  6. 6.Klinik für NeurologieSt. Josef-Hospital, Klinikum der Ruhr-Universität BochumBochumDeutschland
  7. 7.Klinik für NeurologieUniversitätsklinikum JenaJenaDeutschland
  8. 8.Medizinisches Versorgungszentrum Kempten-AllgäuKemptenDeutschland
  9. 9.Klinik für NeurologieKrankenhaus Martha-Maria Halle-Dölau gGmbHHalleDeutschland
  10. 10.Bad HomburgDeutschland
  11. 11.Klinik für NeurologieJüdisches Krankenhaus BerlinBerlinDeutschland
  12. 12.Klinik für NeurologieHeinrich Heine Universität DüsseldorfDüsseldorfDeutschland
  13. 13.Marianne-Strauß-KlinikBergDeutschland
  14. 14.Klinik für NeurologieKlinikum LüdenscheidLüdenscheidDeutschland
  15. 15.Neurologische KlinikUniversitätsklinikum WürzburgWürzburgDeutschland
  16. 16.Klinik für NeurologieUniversitätsklinik EssenEssenDeutschland
  17. 17.Klinik für NeurologieMedizinische Hochschule HannoverHannoverDeutschland
  18. 18.Klinik für NeurologieUniversitätsklinikum UlmUlmDeutschland
  19. 19.Fachklinik für NeurologieDietenbronnDeutschland

Personalised recommendations