Skip to main content
Log in

Diffusion and Persistence of Rotor/Stator Synchronous Full Annular Rub Response Under Weak Random Perturbations

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

In this paper, the diffusion and persistence of synchronous full annular rub in a rotor/stator system under weak random disturbances are studied.

Methods and Results

First, the model of the rotor/stator rubbing system and the global response characteristics of the corresponding deterministic system are introduced. Then the diffusion features of the synchronous full annular rub response under small random perturbation are quantified and visualized using the stochastic sensitivity function for the discrete-time systems. The shape of the density distribution of the rotor orbit under different noise intensities and rotation speeds are compared and discussed. Finally, using the confidence ellipsoid of the response, the mechanism of noise-induced escape from the synchronous full annular rub to a large amplitude response of dry friction backward whirl is revealed, and the persistence of full annular rub response responses under different conditions is discussed and analyzed in detail.

Conclusions

The results may be helpful in studying complex phenomena in random-disturbed rotor/stator rubbing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Jiang J, Ulbrich H (2001) Stability analysis of sliding whirl in a nonlinear Jeffcott rotor with cross-coupling stiffness coefficients. Nonlinear Dyn 24(3):269–283

    Article  MathSciNet  MATH  Google Scholar 

  2. Jacquet-Richardeta G, Torkhanib M, Cartraudc P et al (2013) Rotor to stator contacts in turbomachines. Rev Appl Mech Syst Signal Process 40(2):401–420

    Article  Google Scholar 

  3. Muszynska A (1998) Stability of whirl and whip in rotor/bearing systems. J Sound Vib 127(1):49–64

    Article  MathSciNet  Google Scholar 

  4. Choi YS (2002) Investigation on the whirling motion of full annular rotor rub. J Sound Vib 258(1):191–198

    Article  Google Scholar 

  5. Ding Q, Cooper JE, Leung AY (2002) Hopf bifurcation analysis of a rotor/seal system. J Sound Vib 252(5):817–833

    Article  Google Scholar 

  6. Chu FL, Zhang ZS (1997) Periodic, quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on oil film bearings. Int J Eng Sci 35(10–11):963–973

    Article  MATH  Google Scholar 

  7. Varney P, Green I (2015) Nonlinear phenomena, bifurcations, and routes to chaos in an asymmetrically supported rotor–stator contact system. J Sound Vib 336:207–226

    Article  Google Scholar 

  8. Chu FL, Lu WX (2005) Experimental observation of nonlinear vibrations in a rub-impact rotor system. J Sound Vib 283(3):621–643

    Article  Google Scholar 

  9. Bently DE, Yu JJ, Goldman P et al (2002) Full annular rub in mechanical seals, part I: experimental results. Int J Rotating Mach 8(5):319–328

    Article  Google Scholar 

  10. Leng X, Meng G, Zhang T et al (2007) Bifurcation and chaos response of a cracked rotor with random disturbance. J Sound Vib 299(3):621–632

    Article  Google Scholar 

  11. Yang Y, Wu Q, Wang Y et al (2019) Dynamic characteristics of cracked uncertain hollow-shaft. Mech Syst Signal Process 124:36–48

    Article  Google Scholar 

  12. Li Z, Jiang J, Hong L (2017) Noise-induced transition in a piecewise smooth system by generalized cell mapping method with evolving probabilistic vector. Nonlinear Dyn 88(2):1473–1485

    Article  MathSciNet  Google Scholar 

  13. Guo KK, Cao S, Wang S (2015) Numerical and experimental studies on nonlinear dynamics and performance of a bistable piezoelectric cantilever generator. Shock Vib 21:692731

    Google Scholar 

  14. Litak G, Borowiec M (2014) On simulation of a bistable system with fractional damping in the presence of stochastic coherence resonance. Nonlinear Dyn 77(3):681–686

    Article  MathSciNet  Google Scholar 

  15. Wang Y, Lai YC, Zheng Z (2010) Route to noise-induced synchronization in an ensemble of uncoupled chaotic systems. Phys Rev E 81(3):036201

    Article  Google Scholar 

  16. Li Z, Jiang J, Hong L (2015) Transient behaviors in noise-induced bifurcations captured by generalized cell mapping method with an evolving probabilistic vector. Int J Bifurc Chaos 25(8):1550109

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu D, Xu W, Xu Y (2012) Noise-induced chaos in the elastic forced oscillators with real-power damping force. Nonlinear Dyn 71(3):457–467

    Article  MathSciNet  Google Scholar 

  18. Bashkirtseva I, Ryashko L (2015) Order and chaos in the stochastic Hindmarsh-Rose model of the neuron bursting. Nonlinear Dyn 82(1–2):919–932

    Article  MathSciNet  Google Scholar 

  19. Wu Y, Zhu WQ (2008) Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises. Phys Lett A 372(5):623–630

    Article  MATH  Google Scholar 

  20. Kougioumtzoglou IA, Spanos PD (2012) An analytical Wiener path integral technique for non-stationary response determination of nonlinear oscillators. Probab Eng Mech 28(4):125–131

    Article  Google Scholar 

  21. Li J, Chen JB (2004) Probability density evolution method for dynamic response analysis of structures with uncertain parameters. Comput Mech 34(5):400–409

    Article  MATH  Google Scholar 

  22. Er GK (2000) Exponential closure method for some randomly excited non-linear systems. Int J Nonlinear Mech 35(1):69–78

    Article  MathSciNet  MATH  Google Scholar 

  23. Kumar M, Chakravorty S, Singla P et al (2009) The partition of unity finite element approach with hp-refinement for the stationary Fokker-Planck equation. J Sound Vib 327(1):144–162

    Article  Google Scholar 

  24. Billings L, Bollt EM, Schwartz IB (2002) Phase-space transport of stochastic chaos in population dynamics of virus spread. Phys Rev Lett 88(23):234101

    Article  Google Scholar 

  25. Guo K, Jiang J, Xu Y (2017) Approximation of Stochastic quasi-periodic responses of limit cycles in non-equilibrium systems under periodic excitations and weak fluctuations. Entropy 19(6):280

    Article  Google Scholar 

  26. Bashkirtseva I, Ryashko L (2017) Stochastic sensitivity of regular and multi-band chaotic attractors in discrete systems with parametric noise. Phys Lett A 381:3203–3210

    Article  MathSciNet  MATH  Google Scholar 

  27. Bashkirtseva I, Ryashko L (2011) Sensitivity analysis of stochastic attractors and noise-induced transitions for population model with Allee effect. Chaos 21(4):047514

    Article  MATH  Google Scholar 

  28. Bashkirtseva I, Chen G, Ryashko L (2012) Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system. Chaos 22(3):033104

    Article  MathSciNet  MATH  Google Scholar 

  29. Jiang J (2009) Determination of the global responses characteristics of a piecewise smooth dynamical system with contact. Nonlinear Dyn 57(3):351–361

    Article  MATH  Google Scholar 

  30. Guo KM, Jiang J (2014) Stochastic sensitivity analysis of periodic attractors in non-autonomous nonlinear dynamical systems based on stroboscopic map. Phys Lett A 378(34):2518–2523

    Article  MathSciNet  MATH  Google Scholar 

  31. Bashkirtseva I, Ryashko L, Tsvetkov I (2010) Sensitivity analysis of stochastic equilibria and cycles for the discrete dynamic systems. Dyn Contin Discrete Impuls Syst Ser A Math Anal 17(4):501–515

    MathSciNet  MATH  Google Scholar 

  32. Guo K, Jiang J, Xu Y (2010) Semi-analytical expression of stochastic closed curve attractors in nonlinear dynamical systems under weak noise. Commun Nonlinear Sci Numer Simul 38:91–101

    Article  MathSciNet  Google Scholar 

  33. Tél T, Lai YC (2010) Quasipotential approach to critical scaling in noise-induced chaos. Phys Rev E 81(5):056208

    Article  Google Scholar 

  34. Beri S, Mannella R, Luchinsky DG et al (2005) Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps. Phys Rev E 72(2):036131

    Article  MathSciNet  Google Scholar 

  35. Chen Z, Li Y, Liu X (2016) Noise induced escape from a nonhyperbolic chaotic attractor of a periodically driven nonlinear oscillator. Chaos 26(6):935–992

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11502183, 11772243,11332008 and 11702213), and the Science Foundation of Shaanxi Province (2018JQ1081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Jiang, J. & Li, Z. Diffusion and Persistence of Rotor/Stator Synchronous Full Annular Rub Response Under Weak Random Perturbations. J. Vib. Eng. Technol. 8, 599–611 (2020). https://doi.org/10.1007/s42417-019-00163-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-019-00163-8

Keywords

Navigation