Skip to main content
Log in

Designing Colloidal Silica-Bonded Porous Structures of In-situ Mullite for Thermal Insulation

  • Research and Development
  • Published:
Interceram - International Ceramic Review

Abstract: Colloidal silica (CS) is a promising raw material for refractory castable ceramics. It consists of stable suspensions of synthetic amorphous silica nanoparticles that behave simultaneously as liquid medium and binder for ceramic particles and as a porogenic agent and highly reactive source of silica to promote in-situ reactions. The setting mechanism of CS balances two opposite effects. Adding more CS to a suspension increases the bonding potential for gelling reactions and strengthening; on the other hand, it also introduces more water into the system, enhancing pore content. Such effects can be advantageously employed in the preparation of porous structures from aqueous suspensions and applied as high-temperature thermal insulators. The present study addresses the production of porous structures of in-situ mullite attained from aqueous suspensions of highly porous transition alumina particles bonded with colloidal silica. Different grades of CS and transition aluminas were combined to present suitable workability (flowability and gelling time) and to generate stoichiometric mullite or mullite-alumina porous structures after sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Salomão, R., Villas-Bôas, M.O.C., Pandolfelli, V.C.: Porous alumina-spinel ceramics for high temperature applications. Ceram. Int. 37 (2011) [4] 1393-1399, doi: 10.1016/j.ceramint.2011.01.012

  2. Hammel, E.C., Ighodaro, O.L.R., Okoli, O.I.: Processing and properties of advanced porous ceramics: An application-based review. Ceram. Int. 40 (2014) [10] 15351-15370, doi: 10.1016/j.ceramint.2014.06.095

  3. Ohji, T., Fukushima, M.: Macro-porous ceramics: processing and properties. Int. Mater. Rev. 57 (2012) [2] 115-131, doi: 10.1179/1743280411Y.0000000006

  4. Souza, A. D. V., Sousa, L. L., Fernandes, L., Cardoso, P. H. L., Salomão, R.: Al2O3-Al(OH)3-based castable porous structures. J. Eur. Ceram. Soc. 35 (2015) [6] 1943-1954, doi: 10.1016/j.jeurceramsoc.2015.01.003

  5. Souza, A.D.V., Salomão, R.: Evaluation of the porogenic behavior of aluminum hydroxide particles of different size distributions in castable high-alumina structure. J. Eur. Ceram. Soc. 36 (2016) [3] 885-897, doi: 10.1016/j.jeurceramsoc.2015.11.019

  6. Deng, Z.Y., Fukasawa, T., Ando, M., Zhang, G. J., Ohji, T.: High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)3. J. Am. Ceram. Soc. 84 (2001) [3] 485-491, doi: 10.1111/j.1151-2916.2001.tb00687.x

  7. Deng, Z. Y., Fukasawa, T., Ando, M., Zhang, G. J., Ohji, T. Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide. J. Am. Ceram. Soc. 84 (2001) [11] 2638-2644, doi : 10.1111/j.1151-2916.2001.tb01065.x

  8. Salomão, R., Brandi, J.: Macrostructures with hierarchical porosity produced from alumina-aluminum hydroxide-chitosan wet-spun fibers. Ceram. Int. 39 (2013) [7] 8227-8235, doi: 10.1016/j.ceramint.2013.04.007

  9. Salomão, R., Souza, A.D.V., Cardoso, P.H.L.: A comparison of Al(OH)3 and Mg(OH)2 as inorganic porogenic agents for alumina. InterCeram 64 (2015) [4] 193-199, doi: 10.1007/BF03401122

  10. Salomão, R., Dias, I.M.M., Fernandes, L.: Porogenesis in the alumina-magnesia-spinel system. Interceram 69 (2020) [3] 46-53 doi: 10.1007/s42411-020-0096-6

  11. Oliveira, I.R. de, Leite, V.M.C., Lima, M.P.V.P., Salomão, R.: Production of porous ceramic material using different sources of alumina and calcia. Matéria 20 (2015) [3] 739-746, doi: 10.1590/S1517-707620150003.0078

  12. Salomão, R., Ferreira, V.L., Costa, L.M.M., Oliveira, I.R. de: Effects of the initial CaO-Al2O3 ratio on the microstructure development and mechanical properties of porous calcium hexaluminate. Ceram. Int. 44 (2018) [2] 2626-2631, doi: 10.1016/j.ceramint.2017.11.010

  13. Sakihama, J., Salomão, R.: Microstructure development in porous calcium hexaluminate and application as a high-temperature thermal insulator: A critical review. Interceram 68 (2019) [1] 58-65, doi: 10.1007/s42411-019-0034-7

  14. Kara, F., Little, J.A.: Sintering behavior of precursor mullite powders and resultant microstructure. J. Eur. Ceram. Soc. 16 (1996) [6] 627-635, doi: 10.1016/0955-2219(95)00179-4

  15. Sousa, L.L., Souza, A.D.V., Fernandes, L., Arantes, V.L., Salomão, R.: Development of densification-resistant castable porous structures from in situ mullite. Ceram. Int. 41 (2015) [8] 9443-9454, doi: 10.1016/j.ceramint.2015.03.328

  16. Sousa, L.L., Salomão, R., Arantes, V.L.: Development and characterization of porous moldable refractory structures of the alumina-mullite-quartz system. Ceram. Int. 43 (2017) [1] 1362-1370, doi: 10.1016/j.ceramint.2016.10.093

  17. Salomão, R., Fernandes, L.: Porous co-continuous mullite structures obtained from sintered aluminum hydroxide and synthetic amorphous silica. J. Eur. Ceram. Soc. 37 (2017) [8] 2849-2856, doi: 10.1016/j.jeurceramsoc.2017.03.017

  18. Fernandes, L., Salomão, R.: Preparation and characterization of mullite-alumina structures formed "in situ" from calcined alumina and different grades of synthetic amorphous silica. Mater. Res. 21 (2018) [3] 21(3): e20170783, doi : 10.1590/1980-5373-MR-2017-0783

  19. Salomão, R., Ismael, M. R., Pandolfelli, V. C.: Hydraulic binders for refractory castables: Mixing, curing and drying. CFI Ceram. Forum Int. 84 (2007) [9] E103-E108

  20. Salomão, R.: Porogenic behavior of water in high-alumina castable structures. Adv. Mater. Sci. Eng. 2018 (2018) 1-10, doi: 10.1155/2018/2876851

  21. Salomão, R., Kawamura, M.A., Souza, A.D.V., Sakihama, J.: Hydratable alumina-bonded suspensions: Evolution of microstructure and physical properties during first heating. Interceram 66 (2017) [7] 28-37, doi: 10.1007/BF03401226

  22. Akhondi, H., Taheri-Nassaj, E., Sarpoolaky, H., Taavoni-Gilan, A.: Gelcasting of alumina nanopowders based on gelation of sodium alginate. Ceram. Int. 35 (2009) [3] 1033-1037, doi: 10.1016/j.ceramint.2008.04.023

  23. Salomão, R., Cardoso, P.H.L., Brandi, J.: Gelcasting porous alumina beads of tailored shape and porosity. Ceram. Int. 40 (2014) [10B] 16595-16601, doi : 10.1016/j.ceramint.2014.08.017

  24. Yang, J., Yu, J., Huang, Y.: Recent developments in gelcasting of ceramics. J. Eur. Ceram. Soc. 31 (2011) [14] 2569-2591, doi: 10.1016/j.jeurceramsoc.2010.12.035

  25. Morissette, S.L., Lewis, J.A.: Chemorheology of aqueous-based alumina-poly(vinyl alcohol) gelcasting suspensions. J. Am. Ceram. Soc. 82 (1999) [3] 521-528, doi: 10.1111/j.1151-2916.1999.tb01796.x

  26. Tseng, W.J., Wu, P.S.: Macroporous gibbsite foams prepared from particle-stabilized emulsions using corn starch and agar as binders. Ceram. Int. 38 (2012) [6] 4461-4465, doi: 10.1016/j.ceramint.2012.02.020

  27. Braulio, M.A.L., Piva, M.F.L., Silva, G.F.L., Pandolfelli, V.C.: In situ spinel expansion design by colloidal alumina suspension addition. J. Am. Ceram. Soc. 92 (2009) [2] 559-562, doi: 10.1111/j.1551-2916.2009.02934.x

  28. Singh, B.P., Menchavez, R., Takai, C., Fuji, M., Takahashi, M.: Stability of dispersions of colloidal alumina particles in aqueous suspensions. J. Colloid Interface Sci. 291 (2005) [1] 181-186, doi: 10.1016/j.jcis.2005.04.091

  29. Zhu, X., Jiang, D., Tan, S., Zhang, Z.: Dispersion properties of alumina powders in silica sol. J. Eur. Ceram. Soc. 21 (2001) [16] 2879-2885, doi: 10.1016/S0955-2219(01)00229-1

  30. Ismael, M.R., Anjos, R.D., Salomão, R., Pandolfelli, V.C.: Colloidal silica as a nanostructured binder for refractory castables. Refract. Appl. News 11 (2006) [4] 16-20

  31. Ismael, M.R., Salomão, R., Pandolfelli, V.C.: Refractory castables based on colloidal silica and hydratable alumina. Am. Cer. Soc. Bull. 86 (2007) [9] 58-62.

  32. Ismael, M.R., Salomão, R., Pandolfelli, V.C.: Optimization of the particle size distribution of colloidal silica containing refractory castables. Interceram Ref. Refractories. Man. 4 (2007) 34-39

  33. Souri, A., Nia, F.K., Sarpoolaky, H.: Improving thermo-mechanical properties of tabular alumina castables via using nano structured colloidal silica. Nanomat. Applic. and Prop. 2 (2011) [2] 254-259

  34. Salomão, R., Souza, A.D.V., Fernandes, L., Arruda, C.C.: Advances in nanotechnology for refractories: When very small meets hot, heavy, and large. Am. Cer. Soc. Bull. 92 (2013) [7] 22-28

  35. Singh, A. K., Sarkar, R.: Nano mullite bonded refractory castable composition for high temperature applications. Ceram. Int. 42 (2016) [11] 12937-12945, doi: 10.1016/j.ceramint.2016.05.066

  36. Iler, R.K.: The chemistry of silica, Wiley, New York (1979), ISBN 978-0-471-02404-0

  37. Fernandes, L., Arruda, C.C., Souza, A.D.V., Salomão, R.: Characterization of synthetic amorphous silica (SAS) used in the ceramics industry. Interceram 63 (2014) 220-224, doi: 10.1007/BF03401063

  38. Quercia, G., Lazaro, A., Geus, J.W., Brouwers, H.J.H.: Characterization of morphology and texture of several amorphous nano-silica particles used in concrete. Cem. Concr. Compos. 44 (2013) 77-92, doi: 10.1016/j.cemconcomp.2013.05.006

  39. Fielitz, P., Borchardt, G., Schneider, H., Schmucker, M., Wiedenbeck, M., Rhede, D.: Self-diffusion of oxygen in mullite. J. Eur. Ceram. Soc. 21 (2001) [14] 2577-2582, doi: 10.1016/S0955-2219(01)00276-X

  40. Mccusker, L.B., Von Dreele, R.B., Cox, D.E., Loue, D., Scardi, P.: Rietveld refinement guidelines. Int. Union Crystallogr. J. Appl. Crystallogr. J. Appl. Cryst. 32 (1999) 36-50, doi: 10.1107/S0021889898009856

  41. Souza, A.D.V., Arruda, C.C., Fernandes, L., Antunes, M.L., Kyiohara, P. P.K., Salomão, R.: Characterization of aluminum hydroxide (Al(OH)3) for use as porogenic agent in castable ceramics. J. Eur. Ceram. Soc. 35 (2015) 803-812, doi: 10.1016/j.jeurceramsoc.2014.09.010

  42. Lange, F.F.: Sinterability of agglomerated powders. J. Am. Ceram. Soc. 67 (1984) [2] 83-89, doi: 10.1557/PROC-24-247

  43. Kimura, T., Matsuda, Y., Oda, M., Yamaguchi, T.: Effects of agglomerates on the sintering of alpha-Al2O3. Ceram. Int. 13 (1987) 27-34. doi: 10.1016/0272-8842(87)90035-6

  44. Aksay, L.A., Pask, J.A.: Stable and metastable equilibria in the system SiO2-Al2O3. J. Am. Ceram. Soc. 58 (1975) [11-12] 507-512. doi: 10.1111/j.1151-2916.1975.tb18770.x

  45. Risbud, S.H., Pask, J.A.: Mullite crystallization from SiO2-Al2O3 melts. J. Am. Ceram. Soc. 61 (1978) [1-2] 63-67. doi: 10.1111/j.1151-2916.1978.tb09232.x

  46. Schneider, H., Schreuer, J., Hildmann, B.: Structure and properties of mullite: A review. J. Eur. Ceram. Soc. 28 (2008) [2] 329-344, doi: 10.1016/j.jeurceramsoc.2007.03.017

  47. Schneider, H., Fischer, R.X., Schreuer, J.: Mullite: crystal structure and related properties. J. Am. Ceram. Soc. 98 (2015) [10] 2948-2967, doi: 10.1111/jace.13817

  48. Farenholtz, W.G., Smith, D.M., Cesarano III, J.: Effect of precursor particle size on the densification and crystallization behavior of mullite. J. Am. Ceram. Soc. 76 (1993) [2] 433-437, doi: 10.1111/j.1151-2916.1993.tb03802.x

  49. Sacks, M.D., Wang, K., Scheiffele, G.W., Bozkurt, N.: Effect of composition on mullitization behavior of α-alumina/silica microcomposite powders. J. Am. Ceram. Soc. 80 (1997) [3] 663-672, doi: 10.1111/j.1151-2916.1997.tb02882.x

  50. Sacks, M.D., Bozkurt, N., Scheiffele, G.W.: Fabrication of mullite and mullite-matrix composites by transient viscous sintering of composite powders. J. Am. Ceram. Soc. 74 (1991) [10] 2428-2437, doi: 10.1111/j.1151-2916.1991.tb06780.x

Download references

Acknowledgments

The authors acknowledge Brazilian Research Foundations FAPESP (2010-19274-5; 2017/06738-2; 2018/19773-3), CNPq (305877/2017-8; 408977/2017-5) and CAPES (Financial code 001), for supporting this research, and Alcoa Alumínio (Brazil) and Nouryon South America (Brazil), for supplying the samples of aluminium hydroxide and colloidal silica, respectively. They are indebted to the Electron Microscopy Laboratory of Advanced Materials Research Support Center, EESC/IFSC for the SEM images. The authors also declare that, to the best of their knowledge, no competing interests (financial or personal) affected the results reported in this paper and that they cited all funding and supporting sources.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mendonça Spera, N., Fernandes, L., Sakihama, J. et al. Designing Colloidal Silica-Bonded Porous Structures of In-situ Mullite for Thermal Insulation. Interceram. - Int. Ceram. Rev. 69, 54–63 (2020). https://doi.org/10.1007/s42411-020-0120-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42411-020-0120-x

Navigation