Interceram - International Ceramic Review

, Volume 67, Issue 6, pp 30–35 | Cite as

Effects of TiO2 on the Microstructure of Synthesized Elongated Mullite

  • Xiangong Deng
  • Yongwan Wu
  • Tingting Wei
  • Peng Guo
  • Songlin Ran
  • Lei Han
  • Chuangang Fan
  • Haijun ZhangEmail author
Research and Development Elongated Mullite


Elongated mullite was synthesized via an in situ solid-phase reaction using α-Al2O3 and SiO2 as the raw materials and TiO2 as an additive, and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and transmission electron microscopy (TEM). On the basis of thermodynamic analysis of the reaction process, the effects of TiO2 content and reaction temperature on the phase composition, phase contents, and microstructure of the synthesized samples were investigated. The results showed that elongated mullite with a length of about 8.0 μm was formed for the sample with 7 mass-% TiO2 at 1873 K. The dosage of TiO2 exceeded its solid solubility limit in mullite which resulted in the anisotropic growth of mullite grains.


elongated mullite solid-phase reaction TiO2 anisotropic growth 



This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51672194 and 51472184), Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province (T201602), Key Program of Natural Science Foundation of Hubei Province, China (Contract No. 2017CFA004), Natural Science Foundation of Anhui Provincial Education Department (No. KJ2018A0052), the Opening Project of the Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (No. JKF 18-04), the Open Foundation of the State Key Laboratory of Refractories and Metallurgy (No. G201801), and the Student Research Training Program (SRTP) (201710360184) of Anhui University of Technology.


  1. [1]
    Zeng, D.J., Zhang, H.H., Yang, J.F., Wang, B., Zhang, X.L.: Microstructure and property of porous mullites with a whiskers framework obtained by a sol-gel process. Ceram. Int. 42 (2016) 11270–11274CrossRefGoogle Scholar
  2. [2]
    Zhang, H.H., Zhang, Y.M., Wang, B., Yang, J.F: Preparation and characterization of continuous alumina based fiber reinforced with orientated mullite whisker. Chem. Eng. J. 268 (2015) 109–115CrossRefGoogle Scholar
  3. [3]
    Yuan, L., Ma, B.Y., Zhu, Qiang, Zhang, X.D., Zhang, H., Yu, J.K.: Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process. Ceram. Int. 43 (2017) 5478–5483CrossRefGoogle Scholar
  4. [4]
    Deng, X.G., Ran, S.L., Han, L., Zhang, H.J., Ge, S.T., Zhang, S.W.: Foam-gelcasting preparation of high-strength self-reinforced porous mullite ceramics. J. Eur. Ceram. Soc. 37 (2017) 4059–4066CrossRefGoogle Scholar
  5. [5]
    Deng, X.G., Wang, J.K., Zhang, H.J., Li, F.L., Zhao, W.G., Huang, Z., Zhang, S.W.: Synthesis and growth mechanism of mullite whiskers. J. Chin. Ceram. Soc. 44 (2016) 901–907Google Scholar
  6. [6]
    Wang, W., Zhou, C.J, Liu, G.W., Qiao, G.J.: Molten salt synthesis of mullite whiskers on the surface of SiC ceramics. J. Alloy. Compd. 582 (2014) 96–100CrossRefGoogle Scholar
  7. [7]
    Cao, L.Y., Liu, J.T., Huang, J.F., Zhou, L., Yong, X., Shen, X.T., Kong, L., Yao, C.Y.: Mullite whisker toughened mullite coating to enhance the thermal shock resistance of SiC pre-coated carbon/carbon composites. Ceram. Int. 43 (2017) 16512–16517CrossRefGoogle Scholar
  8. [8]
    Ji, Z.J., Luo, W.Y., Zhou, K.K., Hou, S., Zhang, Q.F., Li, L.Y., Jin, H.Y.: Effects of the shapes and dimensions of mullite whisker on the friction and wear behaviors of resin-based friction materials. Wear 406 (2018) 118–125CrossRefGoogle Scholar
  9. [9]
    Li, J.H., Ma, H.W., Huang, W.H.: Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite. J. Hazard. Mater. 166 (2009) 1535–1539CrossRefGoogle Scholar
  10. [10]
    Roy, J., Bandyopadhyay, N., Das, S., Maitra, S.: Effect of CoO on the formation of mullite ceramics from diphasic Al2O3-SiO2 gel. J. Eng. Sci. Tech. Rev. 3 (2010) 136–141CrossRefGoogle Scholar
  11. [11]
    Monteiro, R.R., Sabioni, A.C.S.: Preparation of mullite whiskers derived from topaz doped with rare earth oxides for applications in composite materials. Ceram. Int. 42 (2016) 49–55CrossRefGoogle Scholar
  12. [12]
    Li, J.F., Lin, H., Li, J.B., Wu, J.: Effects of different potassium salts on the formation of mullite as the only crystal phase in kaolinite. J. Eur. Ceram. Soc. 29 (2009) 2929–2936CrossRefGoogle Scholar
  13. [13]
    Rashad, M., Balasubramanian, M.: Characteristics of porous mullite developed from clay and AlF3·3H2O. J. Eur. Ceram. Soc. 38 (2018) 3673–3680CrossRefGoogle Scholar
  14. [14]
    Deng, X.G., Wu, Y.W., Wei, T.T., Ran, S.L., Huang, L., Zhang, H.J., Li, F.L., Han, L., Ge, S.T., Zhang, S.W.: Preparation of elongated mullite self-reinforced porous ceramics. Ceram. Int. 44 (2018) 7500–7508CrossRefGoogle Scholar
  15. [15]
    Zhu, Z.W., Wei, Z.L., Shen, J.X., Zhu, L., Xu, L., Zhang, Y.F., Wang, S., Liu, T.: Fabrication and catalytic growth mechanism of mullite ceramic whiskers using molybdenum oxide as catalyst. Ceram. Int. 43 (2017) 2871–2875CrossRefGoogle Scholar
  16. [16]
    Ji, H.P., Fang, M.H., Huang, Z.H., Chen, K., Xu, Y.G., Liu, Y.G., Huang, J.T.: Effect of La2O3 additives on the strength and microstructure of mullite ceramics obtained from coal gangue and γ-Al2O3. Ceram. Int. 39 (2013) 6841–6846CrossRefGoogle Scholar
  17. [17]
    Kong, L.B., Zhang, T.S., Ma, J., Boey, F.: Anisotropic grain growth of mullite in high-energy ball milled powders doped with transition metal oxides. J. Eur. Ceram. Soc. 23 (2003) 2247–2256CrossRefGoogle Scholar
  18. [18]
    He, C.L., Li, Y.E.: Metallurgical furnace thermal basis. Beijing: Metallurgical Industrial Press, (1979) 297Google Scholar
  19. [19]
    Baudin, C., Osendi, M.I., Moya, J.S.: Solid solution of TiO2 in mullite. J. Mater. Sci. Lett. 2 (1983) 185–187CrossRefGoogle Scholar
  20. [20]
    Liang., Y., Yin, Y., Wu, Y., Wang, J.: Effect of TiO2 on the sinterability and microstructure of mullite synthesized from Al(OH)3 and SiO2. China’s Refractories 15 (2006) 3–6Google Scholar
  21. [21]
    Sola, E.R., Serrano, F.J., Delgado-Pinar, E., Reventós, M.M., Pardo, A.I., Kojdecki, M.A., Amigó, J.M., Alarcón, J.: Solubility and microstructural development of TiO2-containing 3Al2O3-2SiO2 and 2Al2O3-SiO2 mullites obtained from single-phase gels. J. Eur. Ceram. Soc. 27 (2007) 2647–2654CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • Xiangong Deng
    • 1
    • 2
    • 3
  • Yongwan Wu
    • 2
  • Tingting Wei
    • 2
  • Peng Guo
    • 2
  • Songlin Ran
    • 1
  • Lei Han
    • 3
  • Chuangang Fan
    • 2
  • Haijun Zhang
    • 3
    Email author
  1. 1.Key Laboratory of Metallurgical Emission Reduction & Resources Recycling (Anhui University of Technology), Ministry of EducationMa’anshanChina
  2. 2.School of Materials Science and Engineering, Anhui University of TechnologyMa’anshanChina
  3. 3.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanIndia

Personalised recommendations