Advertisement

Nano-biogenic Hydroxyapatite Porous Scaffolds for Bone Regeneration

  • Salma M. Naga
  • E. M. Mahmoud
  • H. F. El-Maghraby
  • A. M. El-Kady
  • M. S. Arbid
  • A. Killinger
  • R. Gadow
Research and Development Bioceramics
  • 24 Downloads

Abstract

Each year millions of tons of fish bones and shellfish are caught, which is a serious environmental problem. Although these wastes contain valuable minerals, their use is not widespread. The main objective of the present research is to study the use of the extracted nano-hydroxyapatite (n-HA) that is prepared from such natural resources for in vivo study in rats. In vivo tests and biochemical studies were conducted to observe the changes found in blood. Biological studies indicate that the degradation products of the biogenic nano-HA scaffolds do not cause liver disorder, kidney failure, carcinogenic effect, oxidative effects, or liberation of oxygen radicals that could destroy tissue. Neither any inflammatory effect was found.

Keywords

biomedical biomaterials nanomaterials fish bone 

Notes

Acknowledgment

The authors would like to thank the Science and Technology Development Fund (STDF), the German-Egyptian Research Fund (GERF) Projects programme, Project ID 23036 for financing the present research. The authors admit that there are no competing interests, the study does not involve human subjects and that the Science and Technology Development Fund (STDF) Egypt financed their study.

Literature

  1. [1]
    Driessens, F.C.M.: The mineral in bone, dentin and tooth enamel. Bull. Soc. Chim. Belg. 89 (1980) 663–689CrossRefGoogle Scholar
  2. [2]
    Meeder, P.J., Eggers, C.: The history of autogenous bone grafting. Injury 25 (1994) [1] A2–A3Google Scholar
  3. [3]
    Bettin, P., Doz, D.D.: The use of allografts in revision hip alloarthroplasty, in: Allografts in orthopedic practice. A.A. Czitrom, A.E. Gross (Eds.), Williams & Wilkins, Baltimore 83 (1992) 119Google Scholar
  4. [4]
    Togawa, D., Bauer, T.W., Lieberman, I.H., Sakai, H.: Lumbar intervertebral body fusion cages: Histological evaluation of clinically failed cages retrieved from humans. J. Bone Joint Surg. Am. 86-A (2004) [1] 70–79CrossRefGoogle Scholar
  5. [5]
    Barriga, A., Diaz-de Rada, P., Barraso, J.L., Alfonso, M., Lamata, M., Hernaez, S. et al.: Frozen cancellous bone allografts: Positive cultures of implanted grafts in posterior fusions of the spine. Eur. Spine. J. 13 (2004) [2] 152–156CrossRefGoogle Scholar
  6. [6]
    Ohtsuki, C., Kamitakahara, M., Miyazaki, T.: Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J. R. Soc. Interface. 6 (2009) [3] 349–360CrossRefGoogle Scholar
  7. [7]
    Li, S.H., De Wijn, J.R., Layrolle, P., de Groot, K.: Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Matter. Res. 61 (2002) 109–120CrossRefGoogle Scholar
  8. [8]
    Lee, J.S., Baek, S.D., Venkatesan, J., Bhatnager, I., Chang, H.K., Kim, H.T. et al.: In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration. Inter. J. Biol. Macromole 67 (2014) 360–366CrossRefGoogle Scholar
  9. [9]
    Ahmadzadeh, E., Talebnia, F., Tabatabaei, M., Ahmadzadeh, H., Mostaghaci, B.: Osteoconductive composite graft based on bacterial synthesized hydroxyapatite nanoparticles doped with different ions: From synthesis to in vivo studies. Nanomed. Nanotechnol. Bio. L. Med. 12 (2016) 1387–1395CrossRefGoogle Scholar
  10. [10]
    Ross, P.K., Hadzik, J., Seeliger, J., Kozak, K., Jurczyszyn, K., Gerber, H. et al.: New nano-hydroxyapatite in bone defect regeneration: A histological study in rats. Annals. Anatomy 213 (2017) 83–90CrossRefGoogle Scholar
  11. [11]
    Bucholz, R.W.: Nonallograft osteoconductive bone graft substitutes. Clin. Orthop. Relat. Res. 395 (2002) 44–52CrossRefGoogle Scholar
  12. [12]
    Le Geros, R.Z.: Properties of osteocondctive biomaterials: Calcium phosphates. Clin. Orthop. Relat. Res. 395 (2002) 81–89CrossRefGoogle Scholar
  13. [13]
    Giannnoudis, P.V., Dinopoulos, H., Tsiridis, E.: Bone substitutes: An update. Injury 36 (2005) S20–27CrossRefGoogle Scholar
  14. [14]
    Groppo, M.F., Caria, P.H., Freire, A.R., Figueroba, S.R. et.al.: The effect of a hydroxyapatite impregnated PCL membrane in rat subcritical calvarial bone defects. Arch. Oral. Biol. 82 (2017) 209–215CrossRefGoogle Scholar
  15. [15]
    Kang, S.W., Yang, H.S., Seo, S.W., Han. D.K., Kim, B.S.: Apatite-coated poly (lactic-co-glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. J. Biomed. Mater. Res. A 85 (2008) 747–756CrossRefGoogle Scholar
  16. [16]
    Bölgen, N., Vargel, I., Korkusuv, P., Güzel, E., Plieva, F., Galaev, I. et al.: Tissue responses to novel tissue engineering biodegradable cryogel scaffolds: An animal model. J. Biomed. Mater. Res. A 91 (2009) 60–68CrossRefGoogle Scholar
  17. [17]
    Ma, R., Li, Q., Wang, L., Zhang, X., Fang, L., Luo, Z. et al.: Mechanical properties and in vivo study of modified-hydroxyapatite/polyetheretherketone biocomposites. Mater. Sci. Eng. C. 73 (2017) 429–439CrossRefGoogle Scholar
  18. [18]
    Fayyazbakhsh, F., Hashjin, M.S., Keshtkar, A., Shokrgozar, M.A., Dehghan, M.M., Larijani, B.: Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study. Mater. Sci. Eng. C 76 (2017) 701–714CrossRefGoogle Scholar
  19. [19]
    Howlin, R.P., Brayford, M.J., Webb, J. S., Cooper, J.J., Aiken, S.S., Stoodley, P.: Antibiotic-loaded synthetic calcium sulfate beads for prevention of bacterial colonization and biofilm formation in periprosthetic infections. Antimic. Agents Chemother. 59 (2015) 111–120CrossRefGoogle Scholar
  20. [20]
    Peres, J.A., Lamano, T.: Strategies for stimulation of new bone formation: A critical review. Barz. Dent. J. 22 (2011) 443–448CrossRefGoogle Scholar
  21. [21]
    Naga, S.M., El-Maghraby, H.F., Mahmoud, E.M., Talaat, M.S., Ibrhim, A.M.: Preparation and characterization of highly porous ceramic scaffolds based on thermally treated fish bone. J. Ceram. Int. 41 (2015) 15010–15016CrossRefGoogle Scholar
  22. [22]
    Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T.: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed Mater. Res. 24 (1990) 721–734CrossRefGoogle Scholar
  23. [23]
    Queen, H.A., Wassif, W.S., Walker, I., Sadler, D.A., Evans, K.: Age-related biomarkers can be modulated by diet in the rat. J. Food and Nutrition Sci. 2 (2011) 884–890Google Scholar
  24. [24]
    Injac, R., Perse, M., Obermajer, N., Djordjevic-Milic, V., Prijatelj, M., Djordjevic, A., et al.: Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas. J. Biomater. 29 (2008) 3451–3460CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • Salma M. Naga
    • 1
  • E. M. Mahmoud
    • 1
  • H. F. El-Maghraby
    • 1
  • A. M. El-Kady
    • 2
  • M. S. Arbid
    • 3
  • A. Killinger
    • 4
  • R. Gadow
    • 4
  1. 1.National Research Centre, Ceramics DeptCairoEgypt
  2. 2.National Research Centre, Glass DeptCairoEgypt
  3. 3.National Research Centre, Pharmacology Dept.CairoEgypt
  4. 4.Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC)Stuttgart UniversityStuttgartGermany

Personalised recommendations