Advertisement

Characterization of Wollastonite-Copper Nanoparticles Synthesized by a Wet Method

  • E.M.A. Hamzawy
  • S.H. Kenawy
  • A.A. Abd El Aty
  • G.T. El-Bassyouni
Research and Development Nanomaterials

Abstract

A wet method technique was used to prepare nano wollastonite ceramic material doped with 5 % CuO. The gel was fired up to 550 °C. The powder was examined using XRD, HRTEM and SEM supplemented with EDAX. X-ray diffraction analysis (XRD) showed the development of quartz, wollastonite and olivine with/without tenorite. The antibacterial and antifungal activity of the particles was estimated by the zone of the inhibition method. It confirmed that the addition of CuO to wollastonite enriches the inhibitory action against all the tested strains, but the growth of the inhibition zone was found to be more significant against gram-negative bacteria (Pseudomonas aeruginosa). Therefore, the Cu ions might have interacted with the bacterial membrane by initiating mechanical damage to their membrane.

Keywords

Wollastonite nanoparticles antibacterial antifungal 

References

  1. [1]
    Usman, M.S., El Zowalaty, M.E., Shameli, K., Zainuddin, N., Salama, M., Ibrahim, N.A.: Synthesis, characterization, and antimicrobial properties of copper nanoparticles, Int. J. Nanomedicine 8 (2013) 4467–4479Google Scholar
  2. [2]
    Ramsden, J.J.: Applied Nanotechnology. Chapter 17: Global nanotechnology (2018) 245–254, eBook, ISBN: 9780128133446Google Scholar
  3. [3]
    Dziadek, M., Stodolak-Zych, E., Cholewa-Kowalska, K.: Biodegradable ceramic-polymer composites for biomedical applications: A review. Mater. Sci. and Eng. C 71 (2017) 1175–1191CrossRefGoogle Scholar
  4. [4]
    Chatterjee, A.K., Sarkar, R.K., Chattopadhyay, A.P., Aich, P., Chakraborty, R., Basu, T.: A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23 (2012) 1–11CrossRefGoogle Scholar
  5. [5]
    Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., Xiao, Y.: Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomater. 34 (2013) 422–433CrossRefGoogle Scholar
  6. [6]
    Sopcak, T., Medvecky, L., Giretova, M., Stulajterova, R., Durisin, J., Girman, V., Faberova, M.: Effect of phase composition of calcium silicate phosphate component on properties of brushite based composite cements. Mater. Character. 117 (2016) 17–29CrossRefGoogle Scholar
  7. [7]
    Wu, B.C., Wei, C.K., Hsueh, N.S., Ding, S.J.: Comparative cell attachment, cytotoxicity and antibacterial activity of radiopaque dicalcium silicate cement and white-coloured mineral trioxide aggregate. Int. Endod. J. 48 (2015) 268–276CrossRefGoogle Scholar
  8. [8]
    Ho, C.-C., Wei, C.K., Lin. S.-Y. Ding, S.J.: Calcium silicate cements prepared by hydrothermal synthesis for bone repair Ceramics International 42 (2016) 9183–9189CrossRefGoogle Scholar
  9. [9]
    Viet, P.V., Nguyen, H.T., Cao, T.M., Hieu, L.V.: Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J. Nanomater. 2016 (2016), Article ID 1957612, 1–7, http://dx.doi.org/10.1155/2016/1957612Google Scholar
  10. [10]
    Burghardt, I., Lüthen, F., Prinz, C., Kreikemeyer, B., Zietz, C., Neumann, H.G., Rychly, J.: A dual function of copper in designing regenerative implants. Biomater. 44 (2015) 36–44CrossRefGoogle Scholar
  11. [11]
    Kalaivani, S., Singh, R.K., Ganesan, V., Kannan, S.: Effect of copper (Cu2+) inclusion on the bioactivity and antibacterial behaviour of calcium silicate coatings on titanium metal. J. Mater. Chem. B 2 (2014) 846–858CrossRefGoogle Scholar
  12. [12]
    Khan, A., Rashid, A., Younas, R., Chong, R.: A chemical reduction approach to the synthesis of copper nanoparticles. Inter. Nano Lett. 6 (2016) [1] 21–26CrossRefGoogle Scholar
  13. [13]
    Paszkiewicz, M., Gołąbiewska, A., Rajski, L., Kowal, E., Sajdak, A., Zaleska-Medynska, A.: The antibacterial and antifungal textile properties functionalized by bimetallic nanoparticles of Ag/Cu with different structures. J. Nanomaterials (2016), Article ID 6056980, 1–13 http://dx.doi.org/10.1155/2016/6056980Google Scholar
  14. [14]
    Azeena, S., Subhapradha, N., Selvamurugan, N., Narayan, S., Srinivasan, N., Murugesan, R., Chung, T.W., Moorthi, A.: Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering. Mater. Sc. and Eng. C 71 (2017) 1156–1165CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • E.M.A. Hamzawy
    • 1
  • S.H. Kenawy
    • 2
  • A.A. Abd El Aty
    • 3
    • 4
  • G.T. El-Bassyouni
    • 2
  1. 1.Glass Research Dept.National Research Centre (NRC)Dokki, GizaEgypt
  2. 2.Refractories, Ceramics and Building Materials Dept.National Research Centre (NRC)Dokki, GizaEgypt
  3. 3.Chemistry of Microbial Products Dept.National Research Centre (NRC)Dokki, GizaEgypt
  4. 4.Biology Dept., Faculty of EducationHafr Al Batin Univ.Saudi Arabia

Personalised recommendations