Advertisement

Stoneware Tiles Based on Gneiss Rocks

  • N. El-Mehalawy
  • M. El-Omla
  • Salma M. Naga
Research and Development Building Materials
  • 21 Downloads

Abstract

This paper reports on the possibility of using gneiss rock as a substitute flux for the fabrication of stoneware tiles. The petrographic descriptions and the chemical composition of the rock were investigated. The results showed that the sintering temperature, the phase composition, and the thermo-mechanical properties are affected by the chemical composition of the rock used. It revealed that the greater fluxing power of gneiss rock enhanced the vitrification of the bodies. Gneiss rock reduces the firing temperature to 1250 °C. With the increase in the gneiss rock content, higher structural density and better thermo-mechanical strength are obtained.

Keywords

stoneware tiles gneiss rocks phase composition thermo-mechanical properties 

References

  1. [1]
    Torres, P., Fernandes, H.R., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F.: Incorporation of granite cutting sludge in industrial porcelain tile formulation. J. Eur. Ceram. Soc. 24 (2004) 3177–85CrossRefGoogle Scholar
  2. [2]
    Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to Ceramics. 2. Ed., New York, (1976). ISBN: 978-0-471-47860-7Google Scholar
  3. [3]
    Callister, W.D., Rethwisch, D. G.: Materials Science and Engineering. 8. Ed., New York, John Wiley & Sons, Inc., (2009). ISBN-10: 0470419970Google Scholar
  4. [4]
    Emiliani, G.P., Corbara, F.: Ceramic technology-the processing. Faenza, Gruppo Editoriale Faenza Editrice, (1999)Google Scholar
  5. [5]
    Mobarak, H.A., El-Maghraby, A., Mörtel, H., Naga, S. M.: Non conventional fluxes for ceramic production. Tile and Brick. 19 (2003) [1] 20–23Google Scholar
  6. [6]
    Torres, P., Manjate, R.S., Quaresma, H.R., Fernandes, J.M.F., Ferreira: Development of ceramic floor tile compositions based on quartizite and granite sludge. J. Euro. Ceram. Soc. 27 (2007) 4649–4655CrossRefGoogle Scholar
  7. [7]
    Al Zboon, Tahat, M.: Recycling of stone cutting waste in floor tiles production. International Journal of Theoretical & Applied Sciences 1 (2009) [1] 64–71Google Scholar
  8. [8]
    Souza, A.J., Pinheiro, B.C.A., Holanda, J.N.F.: Recycling of gneiss rock waste in the manufacture of vitrified floor tiles. J. Environ. Manag. 91 (2010) 685–689CrossRefGoogle Scholar
  9. [9]
    Hojamberdiev, H., Eminov, A., Xu, Y.: Utilization of muscovite granite waste in the manufacture of ceramic tiles. Ceram. Inter. 37 (2011) 871-876CrossRefGoogle Scholar
  10. [10]
    Junkes, A., Carvalho, M.A., Segadaes, A.M., Hotza, D.: Ceramic tile formulations from industrial waste. Interceram 1 (2011) 36–41Google Scholar
  11. [11]
    Maschio, S., Furlani, E., Tonello, G., Faraone, N., Aneggi, E., Minic-elli, D., Fedrizzi, L., Bachiorrini, A., Bruckner, S.: Fast firing of tiles containing paper mill sludge, glass cullet and clay. Waste Manag. 29 (2009) 2880–2885CrossRefGoogle Scholar
  12. [12]
    Rambaldi, R.: Recycled glass tiles. Ceram. World Rev., 9 (1999) 234–239Google Scholar
  13. [13]
    Mustafi, S., Ahsan, M., Hamid Dewan, A., Ahmed, S., Khatun, N., Absar, N.: Effect of waste glass powder on physico-mechanical properties of ceramic tiles. Bangladesh J. Sci. Res. 24 (2011) [2] 169–180Google Scholar
  14. [14]
    Naga, S.M., Bondioli, F., Wahsh, M.M.S., El-Omla, M.: Utilization of grandiorite in the production of porcelain stoneware tiles. Ceram. Int. 38 (2012) 6267–6272CrossRefGoogle Scholar
  15. [15]
    El-Maghraby, H.F., El-Omla, M., Bondioli, F., Naga, S.M.: Granite as flux in stoneware tile manufacturing. J. Euro. Ceram. Soc. 31 (2011) 2057–2063CrossRefGoogle Scholar
  16. [16]
    Hariharan, V., Shanmugam, M., Amutha, K., Sivakumar, G.: Preparation and characterization of ceramic products using sugarcane bagasse ash waste. Res. J. Recent Sciences 3 (2014) 67–70Google Scholar
  17. [17]
    Batista, A.F., Messer, P.F., Hand, R.J.: Fracture toughness of bone china and hard porcelain. Br. Ceram. Trans. 100 (2001) 256–259CrossRefGoogle Scholar
  18. [18]
    Crespo, M.S.H., Rincon, J.M.: New porcelinized stoneware materials obtained by recycling of MSW incinerator fly ashes and granite sawing residue. Ceram. Int. 27 (2001) 713–720CrossRefGoogle Scholar
  19. [19]
    Dondi, M., Ercolani, G., Melandri, C., Mingazzini, C., Marsigli, M.: The chemical composition of porcelain stoneware tiles and its influence on microstructural and mechanical properties. Int. Ceram. 28 (1999) [2] 75–82Google Scholar
  20. [20]
    Kara, A., Ozer, F., Kayaci, K., Ozer, P.: Development of a multipurpose tile body: Phase and microstructural development. J. Euro. Ceram. Soc. 26 (2006) 3769–3782CrossRefGoogle Scholar
  21. [21]
    Ohya, Y., Takahashi, Y.: Acoustic emission from a porcelain body during cooling. J. Am. Ceram. Soc. 82 (1999) [2] 445–448CrossRefGoogle Scholar
  22. [22]
    Braganca, S.R., Bergman, C.P.A.: A view of whiteware mechanical strength and microstructure Ceram. Int. 29 (2003) [7] 801–806CrossRefGoogle Scholar
  23. [23]
    Tribaudino, M., Angel, R.J., Camara, F., Nestola, F., Pasquel, D., Margiolaki, I.: Thermal expansion coefficient of plagioclase feldspars. Contrib. Mineral. Petrol. 160 (2010) 899–908CrossRefGoogle Scholar
  24. [24]
    Evan, A.G., Tappin, G.: Effect of microstructure on the stress to propagate inherent flaws. Proc. Br. Ceram. 20 (1972) 275–297Google Scholar
  25. [25]
    Carty, W.M., Senapati, U.: Porcelain-raw materials, processing, phase evolution and mechanical behaviour. J. Am. Ceram. Soc. 8 (1998) [1] 3–20Google Scholar
  26. [26]
    Ibanez, A., Pena, P., Sandoval, F., Pena, J.M.G.: Modifications of the inert component in wall-tile bodies. Am. Ceram. Soc. Bull. 71 (1992) [1] 1661–1668Google Scholar
  27. [27]
    Traore, K., Blanchart, P.: Structural transformation of a kaolinite and calcite mixture to gehlenite and anortite. J. Mater. Res. 18 (2003) [2] 475–481CrossRefGoogle Scholar
  28. [28]
    Stathis, G., Ekonomakou, A., Stournaras, C.J., Ftikos, C.: Effect of firing conditions, filler grain size and quartz content on bending strength and physical properties of sanitary ware porcelain. J. Eur. Ceram. Soc. 24 (2004) 2357–2366CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  1. 1.National Research Center, Ceramics DeptCairoEgypt
  2. 2.Bibliography 2 Department of GeologySuez Canal UniversityIsmailiaEgypt

Personalised recommendations