Sonochemical Fabrication of 3D Chromium(III) Oxide Hollow Spheres Using Fructose as a Sacrificial Template

  • Haitham Mohammad AbdelaalEmail author
Research and Development Nanomaterials


As a special class of modern technological materials inorganic materials with hollow interiors have unique features, e.g. low density, large specific surface area, a well-developed porous structure and a high confinement effect. 3D hollow spheres of the ceramic Cr2O3were produced by a sonochemical fabrication path. The Cr2O3precursor was templated on fructose-derived carbonaceous spheres (FDCSs) (with a diameter of 900 nm) through a sonochemical reaction leading to the formation of the Cr@carbonaceous material composite. The findings convincingly demonstrate that utilizing FDCSs as the sacrificial template after the application of a sonochemical synthesis route, is favorable to produce well-defined 3D Cr2O3hollow spheres.


fructose chromium(III) oxide electron microscopy mesoporous materials hollow materials 


  1. [1]
    Lou, X.W., Archer, L.A., Yang, Z.: Hollow micro-/nanostructures: Synthesis and application. Adv. Mater. 20 (2008) 3987–4019CrossRefGoogle Scholar
  2. [2]
    Hu, C.H., Xu, Y.J., Duo, S.W., Li, W.K., Xiang, J.H., Li, M.S., Zhang, R.F.: Preparation of inorganic hollow spheres based on different methods. J. Chin. Chem. Soc. 57 (2013) 1091–1098CrossRefGoogle Scholar
  3. [3]
    Li, Y., Shi, J.: Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Adv. Mater. 26 (2014) 3176–3205CrossRefGoogle Scholar
  4. [4]
    Prieto, G., Tüysüz, H., Duyckaerts, N., Knossalla, J., Wang, G.H., Schüth, F.: Hollow nano- and microstructures as catalysts. Chem. Rev. 116 (2016) 14056–14119CrossRefGoogle Scholar
  5. [5]
    Li, Y., Li, N., Pan, W., Yu, Z., Yang, L., Tang, B.: Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. Appl. Mater. Interfaces 9 (2017) 2123–2129CrossRefGoogle Scholar
  6. [6]
    Widjojo, N., Chung, T.S., Kulprathipanja, S.: The fabrication of hollow fiber membranes with double-layer mixed-matrix materials for gas separation. J. Membr. Sci. 325 (2008) 326–335CrossRefGoogle Scholar
  7. [7]
    Wang, L., Deng, J., Fei, T., Zhang, T.: Template-free synthesized hollow NiO-SnO2 nanospheres with high gas-sensing performance. Sens. Actuator B-Chem. 164 (2012) 90–95CrossRefGoogle Scholar
  8. [8]
    Wang, B., Wu, H., Yu, L., Xu, R., Lim, T.T., Lou, X.W.: Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Adv. Mater. 24 (2012) 1111–1116CrossRefGoogle Scholar
  9. [9]
    Cong, H.P., Yu, S.H.: Hybrid ZnO-dye hollow spheres with new optical properties by a self-assembly process based on Evans blue dye and cetyltrimethylammonium bromide. Adv. Funct. Mater. 17 (2007) 1814–1820CrossRefGoogle Scholar
  10. [10]
    Kim, H., Cho, J.: Template synthesis of hollow Sb nanoparticles as a high-performance lithium battery anode material. Chem. Mater. 20 (2008) 1679–1681CrossRefGoogle Scholar
  11. [11]
    Xia, Y.D., Mokaya, R.: Ordered mesoporous carbon hollow spheres nanocast using mesoporous silica via chemical vapor deposition. Adv. Mater. 16 (2004) 886–891CrossRefGoogle Scholar
  12. [12]
    Gao, C., Donath, E., Moya, S., Dudnik, V., Möhwald, H.: Elasticity of hollow polyelectrolyte capsules prepared by the layer-by-layer technique. Eur. Phys. J. E 5 (2001) 21–27CrossRefGoogle Scholar
  13. [13]
    Zimmermann, C., Feldmann, C., Wanner, M., Gerthsen, D.: Nanoscale gold hollow spheres through a microemulsion approach. Small 3 (2007) 1347–1349CrossRefGoogle Scholar
  14. [14]
    Caruso, F., Caruso, R.A., Möhwald, H.: Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282 (1998) 1111–1114CrossRefGoogle Scholar
  15. [15]
    Peng, S., Sun, S.: Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles. Angew. Chem. Int. Ed. 46 (2007) 4155–4158CrossRefGoogle Scholar
  16. [16]
    Messing, G.L., Zhang, S.C., Jayanthi, G.V.: Ceramic powder synthesis by spray pyrolysis. J. Am. Ceram. Soc. 76 (1993) 2707–2726CrossRefGoogle Scholar
  17. [17]
    Zeng, H.C.: Ostwald ripening: A synthetic approach for hollow nanomaterials. Curr. Nanosci. 3 (2007) 177–181CrossRefGoogle Scholar
  18. [18]
    Abdelaal, H.M., Harbrecht, B.: Approachable way to synthesize 3D silica hollow nanospheres with mesoporous shells via simple template-assisted technique. Chemistry Select 1 (2016) 5961–5966Google Scholar
  19. [19]
    Yuan, J., Zhou, T., Pu, H.: Nano-sized silica hollow spheres: Preparation, mechanism analysis and its water retention property. J. Phys. Chem. Sol. 71 (2010) 1013–1019CrossRefGoogle Scholar
  20. [20]
    Abdelaal, H.M., Zawrah, M.F., Harbrecht, B.: Facile one-pot fabrication of hollow porous silica nanoparticles. Chem. Eur. J. 20 (2014) 673–677CrossRefGoogle Scholar
  21. [21]
    Jin, J., Kim, B., Kim, M., Park, N., Kang, S., Lee, S.M., Kim, H.J., Son, S.U.: Template synthesis of hollow MoS2-carbon nanocomposites using microporous organic polymers and their lithium storage properties. Nanoscale 7 (2015) 11280–11285CrossRefGoogle Scholar
  22. [22]
    Du, N., Zhang, H., Chen, J.E., Sun, J.Y., Chen, B.D., Yang, D.R.: Metal oxide and sulfide hollow spheres: Layer-by-layer synthesis and their application in lithium-ion battery. J. Phys. Chem. B 112 (2008) 14836–14842Google Scholar
  23. [23]
    Xu, H.L., Wang, W.Z.: Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew. Chem. Int. Ed. 46 (2007) 1489–1492CrossRefGoogle Scholar
  24. [24]
    Zurmuel, C., Popescu, R., Gerthsen, D., Feldmann, C.: Microemulsion-based synthesis of nanoscale TiO2 hollow spheres. Solid State Sci. 13 (2011) 1505–1509CrossRefGoogle Scholar
  25. [25]
    Sun, X., Liu, J., Li, Y.: Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J. 12 (2006) 2039–2047CrossRefGoogle Scholar
  26. [26]
    Sevilla, M., Fuertes, A.B.: Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 15 (2009) 4195–4203CrossRefGoogle Scholar
  27. [27]
    Abdelaal, H.M., Harbrecht, B.: Fabrication of metal oxide hollow spheres using fructose derived-carbonaceous spheres as sacrificial templates. C. R. Chimie 18 (2015) 379–384CrossRefGoogle Scholar
  28. [28]
    Dhas, N.A., Suslick, K.S.: Sonochemical preparation of hollow nanospheres and hollow nanocrystals. J. Am. Chem. Soc. 127 (2005) 2368–2369CrossRefGoogle Scholar
  29. [29]
    Suslick, K.S.: Applications of ultrasound to materials chemistry. Ann. Rev. Mater. Sci. 29 (1999) 295–326CrossRefGoogle Scholar
  30. [30]
    Abdelaal, H.M., Harbrecht, B.: One-pot hydrothermal synthesis of carbonaceous spheres with variable sizes from aqueous monosaccharides solutions. Appl. Sci. Lett. 1 (2015) 42–46CrossRefGoogle Scholar
  31. [31]
    Ferreira, T., Rasband, W.: ImageJ, 1.45; Bethesda, Maryland, USA, (2011) Scholar
  32. [32]
    Abdelaal, H.M.: Facile hydrothermal fabrication of nano-oxide hollow spheres using monosaccharides as sacrificial templates. Chemistry Open 4 (2015) 72–75Google Scholar
  33. [33]
    Doicrycz, S.J., Suslick, K.S.: Interparticle collisions driven by ultrasound. Science 247 (1990) 1067–1069CrossRefGoogle Scholar
  34. [34]
    Yang, J.: Structural analysis of perovskite La Cr(1-x)Ni(x)O3 by Rietveld refinement of X-ray powder diffraction data. Acta Crystallogr. B 64 (2008) 281–286CrossRefGoogle Scholar
  35. [35]
    Klug, H.P., Alexander, L.E.: X-ray diffraction procedures, Wiley, New York (1959)Google Scholar
  36. [36]
    X’Pert Plus (1.0), Program for crystallography and Rietveld analysis, Philips Analytical, Almelo, The Netherlands (1999)Google Scholar
  37. [37]
    Ni, D., Wang, L., Sun, Y., Guan, Z., Yang, S., Zhou, K.: Amphiphilic hollow carbonaceous microspheres with permeable shells. Angew. Chem. Int. Ed. 49 (2010) 4223–4227CrossRefGoogle Scholar
  38. [38]
    Esparza, I., Paredes, M., Martinez, R., Couto, A.C., Loredo, G.S., Velez, L.M.F., Dominguez, O.: Solid state reactions in Cr2O3-ZnO nanoparticles synthesized by triethanolamine chemical precipitation. Mater. Sci. Appl. 2 (2011) 1584–1592Google Scholar
  39. [39]
    Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 57 (1985) 603–619CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2018

Authors and Affiliations

  1. 1.Ceramics Department, National Research CentreDokki, CairoEgypt

Personalised recommendations