Advertisement

Heat Flux and Pressure Reduction Using Aerospike and Counterflowing Jet on Complex Hypersonic Flow

  • Juhong JiaEmail author
  • Yijie Zhang
Original Paper
  • 2 Downloads

Abstract

A numerical study on a reduction of aerodynamic heating and pressure by an active or passive control strategy has been conducted. Three-dimensional double ellipsoid models with aerospike or opposing jet are investigated. In numerical analysis, three-dimensional Navier–Stokes equations are solved by a finite-volume method, and hybrid LES/RANS turbulence model is used. The results show that the use of aerospike or counterflowing jet bring about an obvious decrease in pressure and heat flux values of the nose. However, both the pressure and heat flux appears an increase on body surface either for aerospike model or opposing jet model. For aerospike model, the aerospike will push the bow shock standing away from the first ellipsoid and creates an elliptical shaped recirculation zone, in which the pressure and heat flux keep at a low level. After that, the shear layer will reattaches to the shoulder and creates the peak value of the heat flux and pressure. For opposing jet model, the counterflowing jet flows out the nozzle and pushes the bow shock away from the nose. Meanwhile, the jet flow is pushed back by the freestream and reattached to the ellipsoid shoulder surface. Then, the heat flux and pressure peaks are created by reattachment. These separation and reattachment lead to the ups and downs of the surface pressure and heat flux.

Keywords

Hypersonic Flow Heat transfer Aerospike Counterflowing Computational fluid dynamics 

List of Symbols

α*

Latency parameter

y+

Dimensionless wall distance

\( u_{i}^{{\prime }} u_{j}^{{\prime }} \)

Reynolds-stress tensor

\( \delta \)

Small parameter

\( L_{i}^{\Delta } \)

Filter width

\( n \)

The number of face forming cell \( i \)

Q

Heat flux on vehicle surface

Qref

Reference heat flux

P

Pressure on vehicle surface

P

Inflow pressure

\( {\text{Ma}}_{\infty } \)

Inflow Mach number

\( {\text{Re}}_{\infty } \)

Inflow Reynolds number

Maj

Injection flow

Pr

Prandtl number

\( \vec{r}_{c} \)

The centroid of cell \( i \)

\( \vec{r}_{k} \)

The mid-point of face \( k \)

R

Grid refinement factor

qs

Stagnation point heat flux

ρw

Near wall density

ρs

Stagnation point density

μw

Near wall viscosity

μs

Stagnation point viscosity

\( \frac{{{\text{d}}u_{e} }}{{{\text{d}}s}} \)

Velocity gradient

Le

Lewis number

hd

Recovery enthalpy

hs

Stagnation point enthalpy

hw

Near wall enthalpy

Notes

References

  1. 1.
    Kumar S, Mahulikar SP (2017) Design of thermal protection system for reusable hypersonic vehicle using inverse approach. J Spacecr Rockets 54(2):1–11.  https://doi.org/10.2514/1.A33688 CrossRefGoogle Scholar
  2. 2.
    Gerdroodbary MB, Imani M, Ganji DD (2014) Heat reduction using conterflowing jet for a nose cone with aerodisk in hypersonic flow. Aerosp Sci Technol 39(2):652–665.  https://doi.org/10.1016/j.ast.2014.07.005 CrossRefGoogle Scholar
  3. 3.
    Kalimuthu R, Mehta RC, Rathakrishnan E (2013) Pressure measurements over a hemisphere-cylinder body attached with a forward facing spike. Aeronaut J 117(1192):639–646.  https://doi.org/10.1017/s0001924000008265 CrossRefGoogle Scholar
  4. 4.
    Sebastian JJ, Suryan A, Kim HD (2016) Numerical analysis of hypersonic flow past blunt bodies with aerospikes. J Spacec Rockets 53(4):669–677.  https://doi.org/10.2514/1.A33414 CrossRefGoogle Scholar
  5. 5.
    Deng F, Xie F, Qin N, Huang W et al (2018) Drag reduction investigation for hypersonic lifting-body vehicles with aerospike and long penetration mode counterflowing jet. Aerosp Sci Technol 76(6):361–373.  https://doi.org/10.1016/j.ast.2018.01.039 CrossRefGoogle Scholar
  6. 6.
    Gerdroodbary MB, Fallah K, Pourmirzaagha H (2017) Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor. Acta Astronauitca 132(2):25–32.  https://doi.org/10.1016/j.actaastro.2016.11.041 CrossRefGoogle Scholar
  7. 7.
    Li SB, Wang ZG, Barakos GN et al (2016) Research on the drag reduction performance induced by the counterflowing jet for waverider with variable blunt radii. Acta Astronauitca 127(7):120–130.  https://doi.org/10.1016/j.actaastro.2016.05.031 CrossRefGoogle Scholar
  8. 8.
    Anazadehsayed A, Gerdroodbary MB, Amini Y et al (2017) Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow. Acta Astronauitca 137(1):403–414.  https://doi.org/10.1016/j.actaastro.2017.05.007 CrossRefGoogle Scholar
  9. 9.
    Eghlima Z, Mansour K (2017) Drag reduction for the combination of spike and counterflow jet on blunt body at high Mach number flow. Acta Astronauitca 133(9):103–110.  https://doi.org/10.1016/j.actaastro.2017.01.008 CrossRefGoogle Scholar
  10. 10.
    Li SX (2008) Hypersonic characteristic of typical configuration. National Defence Industry Press, Beijing, pp 23–35 (in Chinese) Google Scholar
  11. 11.
    Goldberg U (2005) Hypersonic turbulent flow predictions using CFD++. In: AIAA/CIRA international space planes and hypersonics systems and technologies conference. AIAA-2005-3214:1–8.  https://doi.org/10.2514/6.2005-3214
  12. 12.
    Mortazavi M, Knight DD (2016) Shock wave boundary layer interaction in a hypersonic laminar flow on a hollow cylinder flare. In: 54th AIAA aerospace sciences meeting, 2016. See also AIAA 2016-0351:1–7.  https://doi.org/10.2514/6.2016-0351
  13. 13.
    Chaouat B (2017) The state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows. Flow Turbul Combust 99(2):279–327.  https://doi.org/10.1007/s10494-017-9828-8 CrossRefGoogle Scholar
  14. 14.
    Harish G, Stefan H, Michael KS (2013) A unified RANS-LES model: computational development, accuracy and cost. J Comput Phys 249(9):249–274.  https://doi.org/10.1016/j.jcp.2013.03.066 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zheng W, Xie F, Yan C et al (2019) A hybrid RANS/LES approach with scale-adaptive capabilities for highly separated flows. Int J Comput Fluid Dyn 11(5):1–13.  https://doi.org/10.1080/10618562.2019.1566534 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Batten P, Goldberg U, Chakravarthy S (2003) Using synthetic turbulence to interface RANS and LES. In: Aerospace sciences meeting & exhibit. AIAA 2003-0081:2–9.  https://doi.org/10.2514/6.2003-81
  17. 17.
    Metacomp Technologies Inc (2013) CFD++ user manual. Metacomp Technologies Inc, Agoura HillsGoogle Scholar
  18. 18.
    Bhagwandin VA (2013) Numerical prediction of planar shock wave interaction with a cylindrical body. Bull Mar Sci Miami 39(2):202–212.  https://doi.org/10.1515/botm.1986.29.5.455 CrossRefGoogle Scholar
  19. 19.
    Bhagwandin VA (2016) High-alpha prediction of roll damping and magnus stability coefficients for finned projectiles. J Spacecr Rockets 53(4):1–10.  https://doi.org/10.2514/1.A33419 CrossRefGoogle Scholar
  20. 20.
    Chakravarthy S, Palaniswamy S, Goldberg U et al (1998) A unified-grid approach for propulsion applications. In: AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit. AIAA 1998-3152:1–9.  https://doi.org/10.2514/6.1998-3152
  21. 21.
    Yang J, Liu M (2017) A wall grid scale criterion for hypersonic aerodynamic heating calculation. Acta Astronaut 136(3):137–143.  https://doi.org/10.1016/j.actaastro.2016.11.043 CrossRefGoogle Scholar
  22. 22.
    Duan L, Martin MP (2011) Assessment of turbulence-chemistry interaction in hypersonic turbulent boundary layers. AIAA J 49(1):172–184.  https://doi.org/10.2514/1.j050605 CrossRefGoogle Scholar
  23. 23.
    Zuppardi G, Verde G (2012) Improved Fay–Riddell procedure to compute the stagnation point heat flux. J Spacecr Rockets 35(3):403–405.  https://doi.org/10.2514/2.3342 CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  1. 1.School of Aerospace EngineeringBeijing Institute of TechnologyBeijingChina
  2. 2.Department of ShangyuShaoxing UniversityShaoxingChina

Personalised recommendations