Advertisement

A Convex Programming Approach to Mid-course Trajectory Optimization for Air-to-Ground Missiles

  • Hyuck-Hoon Kwon
  • Han-Lim ChoiEmail author
Original Paper
  • 17 Downloads

Abstract

This paper addresses trajectory optimization in the mid-course phase of an air-to-ground missile, when the main objectives are (a) to ensure that the target is locked on in the center of the missile’s field-of-view at a specified flight path angle and (b) to attain maximum possible speed to allow for sufficient maneuverability in the terminal phase. The method presents as a second-order cone program (SOCP) formulation for this trajectory optimization, taking advantage of partial linearization and lossless convexification techniques that effectively handle underlying non-convex characteristics of the problem. A well-established SOCP solver can then be readily used to obtain the optimal solution to this convex program. The proposed approach is validated by (a) proving the losslessness of the convexification, and (b) numerically comparing the results with an existing pseudo-spectral method.

Keywords

Second-order cone programming Lossless convexification Convex optimization Trajectory optimization Air-to-ground missile 

Notes

References

  1. 1.
    Weiss M, Bucco D (2005) Handover analysis for tactical guided weapons using the adjoint method. In: AIAA guidance, navigation, and control conference and exhibit, San FranciscoGoogle Scholar
  2. 2.
    Song TL, Shin SJ, Cho H (1999) Impact angle control for planar engagement. IEEE Trans Aerosp Electron Syst 35(4):1439–1444CrossRefGoogle Scholar
  3. 3.
    Ryoo CK, Cho H, Tahk MJ (2005) Optimal guidance laws with terminal impact angle. J Guid Control Dyn 28(4):724–732CrossRefGoogle Scholar
  4. 4.
    Ryoo CK, Cho H, Tahk MJ (2006) Time-to-go weighted optimal guidance with impact angle constraints. IEEE Trans Control Syst Technol 14(3):483–492CrossRefGoogle Scholar
  5. 5.
    Kim BS, Lee JG, Han HS (1998) Biased PNG law for impact angle with angular constraint. IEEE Trans Aerosp Electron Syst 34(1):277–288CrossRefGoogle Scholar
  6. 6.
    Erer KS, Merttopcuoglu O (2012) Indirect impact-angle-control against stationary targets using biased pure proportional navigation. J Guid Control Dyn 35(2):700–703CrossRefGoogle Scholar
  7. 7.
    Park BG, Kim TH, Tahk MJ (2013) Optimal impact angle control guidance law considering the seeker’s field-of-view limits. J Proc Inst Mech Eng Part G J Aerosp Eng 227(8):1347–1364CrossRefGoogle Scholar
  8. 8.
    Kim TH, Park BG, Tahk MJ (2013) Bias-shaping method for biased proportional navigation with terminal-angle constraint. J Guid Control Dyn 36(6):1810–1816CrossRefGoogle Scholar
  9. 9.
    Tekin R, Erer KS (2015) Switched-gain guidance for impact angle control under physical constraints. J Guid Control Dyn 38(2):205–216CrossRefGoogle Scholar
  10. 10.
    Hargraves CR, Paris SW (1987) Direct trajectory optimization using nonlinear programming and collocation. J Guid Control Dyn 10(4):338–342CrossRefGoogle Scholar
  11. 11.
    Betts JT (1998) Survey of numerical methods for trajectory optimization. J Guid Control Dyn 21(2):193–207CrossRefGoogle Scholar
  12. 12.
    Fahroo F, Ross IM (2002) Direct trajectory optimization by a Chebyshev pseudospectral method. J Guid Control Dyn 25(1):160–166CrossRefGoogle Scholar
  13. 13.
    Hull DG (1997) Conversion of optimal control problems into parameter optimization problems. J Guid Control Dyn 20(1):57–60CrossRefGoogle Scholar
  14. 14.
    Lu P (2017) Introducing computational guidance and control. J Guid Control Dyn 40(2):193CrossRefGoogle Scholar
  15. 15.
    Liu X, Lu P, Pan B (2017) Survey of convex optimization for aerospace applications. Astrodynamics 1(1):23–40CrossRefGoogle Scholar
  16. 16.
    Acikmese B, Ploen SR (2007) Convex programming approach to powered descent guidance for mars landing. J Guid Control Dyn 30(5):1353–1366CrossRefGoogle Scholar
  17. 17.
    Blackmore L, Acikmese B, Scharf DP (2010) Minimum landing error powered descent guidance for mars landing using convex optimization. J Guid Control Dyn 33(4):1161–1171CrossRefGoogle Scholar
  18. 18.
    Lu P, Liu X (2013) Autonomous trajectory planning for rendezvous and proximity operations by conic programming. J Guid Control Dyn 36(2):375–389CrossRefGoogle Scholar
  19. 19.
    Liu X, Shen Z, Lu P (2016) Exact convex relaxation for optimal flight of aerodynamically controlled missiles. IEEE Trans Aerosp Electron Syst 52(4):1881–1892CrossRefGoogle Scholar
  20. 20.
    Dueri D, Acikmese B, Scharf DP, Harris MW (2017) Customized real-time interior-point methods for onboard powered-descent guidance. J Guid Control Dyn 40(2):197–212CrossRefGoogle Scholar
  21. 21.
    Liu X, Shen Z, Lu P (2015) Solving the maximum-crossrange problem via successive second-order cone programming with a line search. Aerosp Sci Technol 47:10–20CrossRefGoogle Scholar
  22. 22.
    Liu X, Shen Z, Lu P (2016) Entry trajectory optimization by second-order cone programming. J Guid Control Dyn 39(2):227–241CrossRefGoogle Scholar
  23. 23.
    Szmuk M, Acikmese B, Berning AW Jr (2016) Successive convexification for fuel-optimal powered landing with aerodynamic drag and non-convex constraints. In: AIAA guidance, navigation and control conference, AIAA SciTech Forum, San Diego, CaliforniaGoogle Scholar
  24. 24.
    Mao Y, Szmuk M, Acikmese B (2016) Successive convexification of non-convex optimal control problems and its convergence properties. In: IEEE 55th conference on decision and control, Las VegasGoogle Scholar
  25. 25.
    Szmuk M, Eren U, Berning AW Jr (2017) Successive convexification for 6-DoF powered descent landing guidance. In: AIAA guidance, navigation and control conference, AIAA SciTech Forum, GrapevineGoogle Scholar
  26. 26.
    Mao Y, Dueri D, Szmuk M, Acikmese B (2017) Successive convexification of non-convex optimal control problems with state constraints. In: 20th IFAC world congress, ToulouseGoogle Scholar
  27. 27.
    Acikmese B, Blackmore L (2011) Lossless convexification of a class of optimal control problems with non-convex control constraints. Automatica 47(2):341–347MathSciNetCrossRefGoogle Scholar
  28. 28.
    Harris MW, Acikmese B (2013) Lossless convexification for a class of optimal control problems with linear state constraints. In: 52nd IEEE conference on decision and control, FlorenceGoogle Scholar
  29. 29.
    Acikmese B, Carson JM III, Blackmore L (2013) Lossless convexification of nonconvex control bound and pointing constraints of the soft landing optimal control problem. IEEE Trans Control Syst Technol 21(6):2104–2113CrossRefGoogle Scholar
  30. 30.
    Harris MW, Acikmese B (2013) Lossless convexification for a class of optimal control problems with quadratic state constraints. In: American control conference, Washington, DCGoogle Scholar
  31. 31.
    Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  32. 32.
    Hartl RF, Sethi SP, Vickson RG (1995) A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev 37(2):181–218MathSciNetCrossRefGoogle Scholar
  33. 33.
    Sagliano M (2018) Pseudospectral convex optimization for powered descent and landing. J Guid Control Dyn 41(2):320–334CrossRefGoogle Scholar
  34. 34.
    Sagliano M (2019) Generalized hp pseudospectral convex programming for powered descent and landing. J Guid Control Dyn 42(7):1562–1570CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringKAISTDaejeonRepublic of Korea

Personalised recommendations