Advertisement

Numerical Integration of Quaternion Kinematics Using Collocation Method

  • Donghun LeeEmail author
  • Hyochoong Bang
Original Paper
  • 53 Downloads

Abstract

In many aerospace applications, long-term attitude propagation is frequently involved. Because the integration error accumulates, the accuracy of the integration scheme is more important for the long-term attitude propagation problems. In this study, instead of explicit integration methods that have been extensively employed, the collocation method for the attitude propagation problem is studied to improve numerical integration accuracy. The closed-form solution for the collocation conditions imposed at the collocation points is derived to avoid iterative process in the collocation method. In the derivation, the operational matrix of differentiation and the Legendre–Gauss–Lobatto quadrature rule are used. Through numerical examples, the accuracy of the proposed collocation method is compared with those of the explicit methods.

Keywords

Attitude propagation Quaternion kinematics Collocation method Pseudospectral method 

References

  1. 1.
    Shuster MD (1993) A survey of attitude representations. J Astronaut Sci 41(4):439–517MathSciNetGoogle Scholar
  2. 2.
    Patera RP (2010) Attitude propagation for a slewing angular rate vector. J Guid Control Dyn 33(6):1847–1855.  https://doi.org/10.2514/1.48790 CrossRefGoogle Scholar
  3. 3.
    Andrle MS, Crassidis JL (2013) Geometric integration of quaternions. J Guid Control Dyn 36(6):1762–1767.  https://doi.org/10.2514/1.58558 CrossRefGoogle Scholar
  4. 4.
    Treven A, Saje M (2015) Integrating rotation and angular velocity from curvature. Adv Eng Softw 85:26–42.  https://doi.org/10.1016/j.advengsoft.2015.02.010 CrossRefGoogle Scholar
  5. 5.
    Jiang YF, Lin YP (1992) Improved strapdown coning algorithm. IEEE Trans Aerosp Electron Syst 28(2):484–490.  https://doi.org/10.1109/7.144574 CrossRefGoogle Scholar
  6. 6.
    Jah M, Madler R (2007) Satellite characterization: angles and light curve data fusion for spacecraft state and parameter estimation. In: Proceedings of the advanced Maui optical and space surveillance technologies conference, vol 49, Wailea, HIGoogle Scholar
  7. 7.
    Linares R, Crassidis JL, Jah MK, Kim H (2010) Astrometric and photometric data fusion for resident space object orbit, attitude, and shape determination via multiple-model adaptive estimation. In: AIAA guidance, navigation, and control conference, AIAA.  https://doi.org/10.2514/6.2010-8341
  8. 8.
    Choe SB, Faraway JJ (2004) Modeling head and hand orientation during motion using quaternions. Soc Automot Eng.  https://doi.org/10.4271/2004-01-2179 Google Scholar
  9. 9.
    Vadali SR, Krishman S (1995) Suboptimal command generation for control moment gyroscopes and feedback control of spacecraft. J Guid Control Dyn 18(6):1350–1354.  https://doi.org/10.2514/3.21552 CrossRefGoogle Scholar
  10. 10.
    Lee D, Park CG, Bang H (2013) Gimbal angle reorientation for nonredundant single gimbal control moment gyros. In: AIAA guidance, navigation, and control conference, Boston, MA, Aug 19–22, 2013.  https://doi.org/10.2514/6.2013-4960
  11. 11.
    Gupta S (1998) Linear quaternion equations with application to spacecraft attitude propagation. In: Proceedings of the IEEE aerospace conference, vol 1, IEEE Publications, Piscataway, NJ, pp 69–76.  https://doi.org/10.1109/aero.1998.686806
  12. 12.
    Yen K, Cook G (1980) Improved local linearization algorithm for solving the quaternion equations. J Guid Control Dyn 3(5):468–471.  https://doi.org/10.2514/3.56022 CrossRefGoogle Scholar
  13. 13.
    Chiou JC, Jan YW, Wu SD (2001) Family of constraint-preserving integrators for solving quaternion equations. J Guid Control Dyn 24(1):72–78.  https://doi.org/10.2514/2.4677 CrossRefGoogle Scholar
  14. 14.
    Crouch P, Grossman R (1993) Numerical integration of ordinary differential equations on manifolds. J Nonlinear Sci 3(1):1–33.  https://doi.org/10.1007/BF02429858 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jackiewicz Z, Marthinsen A, Owren B (2000) Construction of Runge–Kutta methods of Crouch–Grossman type of high order. Adv Comput Math 13(4):405–415.  https://doi.org/10.1023/A:101664573 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Seelen LJ, Padding JT, Kuipers JA (2016) Improved quaternion-baed integration scheme for rigid body motion. Acta Mech 227(12):2345–2374.  https://doi.org/10.1007/s00707-016-1670-x CrossRefzbMATHGoogle Scholar
  17. 17.
    Rucker C (2018) Integrating rotations using nonunit quaternions. IEEE Robot Autom Lett 3(4):2979–2986.  https://doi.org/10.1109/LRA.2018.2849557 CrossRefGoogle Scholar
  18. 18.
    Terze Z, Muller A, Zlatar D (2016) Singular-free time integration of rotational quaternions using non-redundant ordinary differential equations. Multibody Syst Dyn 38(3):201–225.  https://doi.org/10.1109/LRA.2018.2849557 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Boyle M (2017) The integration of angular velocity. Adv Appl Clifford Algebras 27(3):2345–2374.  https://doi.org/10.1007/s00006-017-0793-z MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hargraves CR, Paris SW (1987) Direct trajectory optimization using nonlinear programming and collocation. J Guid Control Dyn 10(4):338–342.  https://doi.org/10.2514/3.20223 CrossRefzbMATHGoogle Scholar
  21. 21.
    Herman AL, Conway BA (1996) Direct optimization using collocation based on high order Gauss–Lobatto quadrature rules. J Guid Control Dyn 19(3):592–599.  https://doi.org/10.2514/3.21662 CrossRefzbMATHGoogle Scholar
  22. 22.
    Cellier EF, Kofman E (2006) Continuous system simulation. Springer, BerlinzbMATHGoogle Scholar
  23. 23.
    Fahroo F, Ross IM (2001) Costate estimation by a Legendre pseudospectral method. J Guid Control Dyn 24(2):270–277.  https://doi.org/10.2514/2.4709 CrossRefGoogle Scholar
  24. 24.
    Elnagar G, Kazemi MA, Razzaghi M (1995) The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans Autom Control 40(10):1793–1796.  https://doi.org/10.1109/9.467672 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Darby CL, Hager WW, Rao AV (2011) Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J Spacecr Rockets 48(3):433–445.  https://doi.org/10.2514/1.52136 CrossRefGoogle Scholar
  26. 26.
    Fahroo F, Ross IM (2002) Direct trajectory optimization by a Chebyshev pseudospectral method. J Guid Control Dyn 25(1):160–166.  https://doi.org/10.2514/2.4862 CrossRefGoogle Scholar
  27. 27.
    Guo B-Y, Yan J-P (2009) Legendre–Gauss collocation method for initial value problems of second order ordinary differential equations. Appl Numer Math 59(6):1386–1408.  https://doi.org/10.1016/j.apnum.2008.08.007 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ford KA, Hall CD (2000) Singular direction avoidance steering for control-moment gyros. J Guid Control Dyn 23(4):648–656.  https://doi.org/10.2514/2.4610 CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Korea Aerospace Research InstituteDaejeonRepublic of Korea
  2. 2.Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations