Advertisement

Augmented Polynomial Guidance with Terminal Speed Constraints for Unpowered Aerial Vehicles

  • Min-Jea TahkEmail author
  • Gun-Hee Moon
  • Sang-Wook Shim
Original Paper
  • 47 Downloads

Abstract

This paper addresses an augmented polynomial guidance law developed to control the terminal velocity of unpowered aerial vehicles. This problem can be formulated as a guidance problem subject to terminal speed and path angle constraints. This paper utilizes the augmented polynomial guidance method to guide the vehicle Technology, Daejeon to the destination and to control the terminal speed. An efficient prediction method is proposed to calculate the terminal speed and its sensitivity in terms of the bias term of the guidance law. The prediction procedure is made computationally efficient by changing the independent variable from time to downrange and integrating only the speed along a polynomial path. If the desired speed is reachable by an augmented polynomial guidance law, the conditions for finding the solution are all satisfied. Even if the desired speed is not achievable, the algorithm minimizes the terminal speed error. Numerical simulation demonstrates the performance of the proposed algorithm.

Keywords

Terminal velocity control Terminal speed control Unpowered vehicle Augmented polynomial guidance 

Notes

Acknowledgement

This work was conducted at High-Speed Vehicle Research Center of KAIST with the support of the Defense Acquisition Program Administration and Agency for Defense Development. (Contract number: UD170018CD).

References

  1. 1.
    Kim M, Grider KV (1973) Terminal guidance for impact attitude angle constrained flight trajectories. IEEE Trans Aerosp Electron Syst 6:852–859CrossRefGoogle Scholar
  2. 2.
    Song TL, Shin SJ, Cho H (1999) Impact angle control for planar engagements. IEEE Trans Aerosp Electron Syst 35(4):1439–1444CrossRefGoogle Scholar
  3. 3.
    Ohlmeyer EJ, Phillips CA (2006) Generalized vector explicit guidance. J Guidance Control Dyn 29(2):261–268CrossRefGoogle Scholar
  4. 4.
    Tahk M-J, Ryoo C-K, Cho H (2002) Recursive time-to-go estimation for homing guidance missiles. IEEE Trans Aerosp Electron Syst 38(1):13–24CrossRefGoogle Scholar
  5. 5.
    Song E-J, Tahk M-J (2002) Three-dimensional midcourse guidance using neural networks for interception of ballistic targets. IEEE Trans Aerosp Electron Syst 38(2):404–414CrossRefGoogle Scholar
  6. 6.
    Ryoo C-K, Cho H, Tahk M-J (2005) Optimal guidance laws with terminal impact angle constraint. J Guidance Control Dyn 28(4):724–732CrossRefGoogle Scholar
  7. 7.
    Ryoo C-K, Cho H, Tahk M-J (2006) Time-to-go weighted optimal guidance with impact angle constraints. IEEE Trans Control Syst Technol 14(3):483–492CrossRefGoogle Scholar
  8. 8.
    Jeon I-S, Lee J-I, Tahk M-J (2006) Impact-time-control guidance law for anti-ship missiles. IEEE Trans Control Syst Technol 14(2):260–266CrossRefGoogle Scholar
  9. 9.
    Min B-M, Tahk M-J, Shim HC, Bang HC (2007) Guidance law for vision-based automatic landing of UAV. KSAS International Journal 8(1):46–53Google Scholar
  10. 10.
    Kim T-H, Lee C-H, Tahk M-J (2011) Time-to-go polynomial guidance laws with terminal impact angle/acceleration constraints. In: Proceedings of 18th IFAC world congress, vol 44, No. 1, pp. 3915–3919Google Scholar
  11. 11.
    Lee C-H, Kim T-H, Tahk M-J, Whang I-H (2013) Polynomial guidance laws considering terminal impact angle and acceleration constraints. IEEE Trans Aerosp Electron Syst 49(1):74–92CrossRefGoogle Scholar
  12. 12.
    Kim T-H, Lee C-H, Jeon I-S, Tahk M-J (2013) Augmented polynomial guidance with impact time and angle constraints. IEEE Trans Aerosp Electron Syst 49(4):2806–2817CrossRefGoogle Scholar
  13. 13.
    Moon, G-H, Shim S-W, Tahk M-J (2016) Augmented polynomial guidance for terminal velocity constraints. 30th Congress of the International Council of the Aeronautical Sciences, Sep. 25–30, 2016Google Scholar
  14. 14.
    Clarke DW, Mohtadi C, Tuffs PS (1987) Generalized predictive control; Part I. The basic algorithm. Automatica 23(2):137–148CrossRefzbMATHGoogle Scholar
  15. 15.
    Morari M, Lee JH (1999) Model predictive control: past, present and future. Comput Chem Eng 23(4):667–682CrossRefGoogle Scholar
  16. 16.
    Kouvaritakis B, Cannon M (2001) Non-linear predictive control: theory and practice. Automatica 61Google Scholar
  17. 17.
    Lee JH (2009) A lecture on model predictive control. Pan American Advanced Studies Institute Program on Process Systems Engineering, 2009Google Scholar
  18. 18.
    Rawlings JB, Mayne DQ (2009) Model predictive control: theory and design. Nob Hill Publication, San FranciscoGoogle Scholar
  19. 19.
    Baldwin M, Kolmanovsky I (2013) Hypersonic glider guidance using model predictive control. IEEE American Control Conference (ACC) 2013:5550–5555Google Scholar
  20. 20.
    Padhi R, Kothari M (2009) Model predictive static programming: a computationally efficient technique for suboptimal control design. Int J Innov Comput Inf Control 5(2):399–411Google Scholar
  21. 21.
    Chawla C, Sarmah P, Padhi R (2010) Suboptimal reentry guidance of a reusable launch vehicle using pitch plane maneuver. Aerosp Sci Technol 14(6):377–386CrossRefGoogle Scholar
  22. 22.
    Halbe O, Mathavaraj S, Sarmah P, Chawla C, Chethana P, Padhi R (2010) Nonlinear optimal reentry guidance and control of RLV in pitch plane. In: 2010 IFAC proceedings volumes, vol 43, no. 15, pp 142–147Google Scholar
  23. 23.
    Oza HB, Padhi R (2012) Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles. J Guidance Control Dyn 35(1):153–164CrossRefGoogle Scholar
  24. 24.
    Menon P-K, Briggs M (1990) Near-optimal midcourse guidance for air-to-air missiles. IEEE J Guidance Control Dyn 13(4):596–602CrossRefGoogle Scholar
  25. 25.
    Imado F, Kuroda T, Miwa S (1990) Optimal midcourse guidance for medium-range air-to-air missiles. J Guidance Control Dyn 13(4):603–608CrossRefGoogle Scholar
  26. 26.
    Cheng VHL, Gupta N-K (1986) Advanced midcourse guidance for air-to-air missiles. J Guidance Control Dyn 9(2):135–142CrossRefGoogle Scholar
  27. 27.
    Miyazawa Y, Motoda T, Izumi T, Hata T (1999) Longitudinal landing control law for an autonomous reentry vehicle. J Guidance Control Dyn 22(6):791–800CrossRefGoogle Scholar
  28. 28.
    Yong E, Tang G, Chen L (2008) Rapid trajectory optimization for hypersonic reentry vehicle via Gauss pseudo spectral method. J Astronaut 6(29):1766–1772Google Scholar
  29. 29.
    Roenneke A, Well K (1995) Nonlinear flight control for a high-lift reentry vehicle. AIAA Guidance, navigation and control conference, pp 1798–1805Google Scholar
  30. 30.
    Mejias L, Fitzgerald DL, Eng PC, Xi L (2009) Forced landing technologies for unmanned aerial vehicles: towards safer operations. Aer Veh 415–442Google Scholar
  31. 31.
    Eng P, Mejias L, Liu X, Walker R (2010) Automating human thought processes for a UAV forced landing. J Intell Rob Syst 57(1):329–349CrossRefzbMATHGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations