Advertisement

Numerical Modeling of Pulsed Plasma Thruster Performance with Teflon Ablation and Ionization

  • Min Gyoung Cho
  • Hong-Gye SungEmail author
Original Paper

Abstract

A numerical model employing the ablation rate and ionization of Teflon is developed to analyze pulsed plasma thruster (PPT) performance. A one-dimensional lumped circuit analysis model is implemented to calculate the discharge current. The Saha equation and Keidar Teflon ablation model are used to analyze the ionization of carbon and fluorine molecules produced by the Teflon gas. The numerical model also predicts the electron temperature distribution and simplified plasma shape during the discharge. Numerical simulation results with different voltage conditions compare reasonably well with experimental data. The Teflon gas flux reaches its maximum value at the maximum electron temperature and then gradually decays. The multivalent ions are investigated for PPT operation.

Keywords

Pulsed plasma thruster Lumped circuit model Teflon ablation Ionization 

List of Symbols

A

Propellant cross area (m2)

B

Magnetic field (T)

\( C_{\text{PPT}} \)

Capacitance of the PPT (F)

h

Separation distance between electrodes (m), Planck’s constant (m2kg/s)

I

Current (A)

J

Current density (A/m2)

k

Boltzmann constant (J/K)

L

Inductance (H)

m

Mass

\( \dot{m} \)

Mass flow rate (kg/s)

N

Number density (1/m3)

P

Pressure (Pa)

v

Velocity (m/s)

V0

Voltage applied across the capacitor (V)

R

Resistance (Ω)

S

Surface (m2)

T

Temperature (K)

Greek

β

Correction factor

\( \phi \)

Half thickness of electrode (m)

\( \phi_{\text{B}} \)

Magnetic flux (V s)

\( \mu_{0} \)

Magnetic permeability of free space (N/\( {\text{A}}^{2} \))

σ

Conductivity (S/m)

\( \varGamma_{\text{i}} \)

Ion erosion rate (kg/C)

Subscripts

0

Boundary of the Teflon surface

1

Boundary of Knudsen layer

2

Boundary of hydrodynamic non-equilibrium layer

i

Ion

e

Electron

tot

Total

Perpendicular direction

Parallel direction

H

Hall direction

Notes

Acknowledgements

This work was supported by a grant from the National Research Foundation of Korea (NRF-2015M1A3A3A02 104484).

References

  1. 1.
    Koizumi H, Noji R, Komurasaki K, Arakawa Y (2007) Plasma acceleration processes in an ablative pulsed plasma thruster. Phys Plasma 14(3):033506CrossRefGoogle Scholar
  2. 2.
    Schonherr T, Stein M, Komurasaki K (2015) Investigation of discharge arc phenomena in ablative PPT. In: IECP-2015-79Google Scholar
  3. 3.
    Rhodes R, Keefer D, Thomas H (2007) A numerical study of a pulsed plasma thruster. In: 37th AIAA joint propulsion conference, AIAA 2001-3895Google Scholar
  4. 4.
    MacGillivray J, Peterkin Jr RE, Burke DA, Frese MH, Frese S, Neri J, Schumer JW (2003) MACH3: a chssi code for computational magneto-hydrodynamics of general materials in generalized coordinates. In: User group conference, pp 228–235Google Scholar
  5. 5.
    Surzhikov ST, Gatsonis NA (2001) A splitting method for unsteady 3-D magneto-gasdynamic flows applied to pulsed plasma thruster plumes. In: 32nd AIAA joint propulsion conference, AIAA 2001-2743Google Scholar
  6. 6.
    Awadallah RS, Freund DE, Simon DH (2005) Electromagnetic emission modeling for micro pulsed plasma thrusters. In: 41st AIAA joint propulsion conference, AIAA 2005-3698Google Scholar
  7. 7.
    Gatsonis NA, Demetriou MA (2005) Prospects of plasma flow modeling and control for micro pulsed plasma thrusters. In: 40th AIAA joint propulsion conference, AIAA 2004-3464Google Scholar
  8. 8.
    Shaw PV (2011) Pulsed plasma thrusters for small satellites. Doctoral thesis, University of SurreyGoogle Scholar
  9. 9.
    Keidar M, Boyd ID, Beilis II (2001) On the model of Teflon ablation in an ablation controlled discharge. J Phys D 34(11):1675–1677CrossRefGoogle Scholar
  10. 10.
    Cho M, Sung H-G (2017) Theoretical modeling of pulsed plasma thruster performance with teflon ablation. Int J Aeronaut Space Sci 18(1):112–121Google Scholar
  11. 11.
    Hippler R, Kersten H, Schmidt M, Schoenbanch (2008) Low temperature plasmas: fundamentals, technologies, and techniques, vol 1. Wiley-VCH, Weinheim, pp 1–2Google Scholar
  12. 12.
    Yang L, Huang Y, Tang H, Liu X (2015) Ablation and ionization phenomenon in a Teflon pulsed plasma thruster. In: IEPC-2015-78Google Scholar
  13. 13.
    Keider M, Beilis II (2013) Plasma engineering: application from aerospace to bio- and nanotechnology. Elsevier, New York, pp 73–78Google Scholar
  14. 14.
    Cho M, Sung H-G (2017) An unsteady modeling of the Teflon ionization for a pulsed plasma thruster performance. J KSASS 45(8):697–703Google Scholar
  15. 15.
    Krinberg IA (2005) Three modes of vacuum arc plasma expansion in the absence and presence of a magnetic field. IEEE Trans Plasma Sci 33(5):1548–1552CrossRefGoogle Scholar

Copyright information

© The Korean Society for Aeronautical & Space Sciences 2019

Authors and Affiliations

  1. 1.Korea Aerospace UniversityGoyangRepublic of Korea

Personalised recommendations