Advertisement

Experimental Progress in Electrical Properties and Dielectric Strength of Polyvinyl Chloride Thin Films Under Thermal Conditions

  • Ahmed ThabetEmail author
  • Nourhan Salem
Regular Paper
  • 17 Downloads

Abstract

Nanoparticles is used to enhance structure and characterization of electrical insulation. In this paper, it has been succeeded for enhancing electric properties and dielectric strength of polyvinyl chloride (PVC) thin films due to the penetration of nanoparticles inside the polymer matrix. It has been specified types and arrangement of individual nanoparticles and multiple nanoparticles in base matrix host material for controlling in electric properties (resistance, inductance, conductance, susceptance and impedance) of PVC thin films materials. Also, this work has been succeeded to find optimal types and concentrations of multiple nanoparticles for controlling on dielectric strength of insulating materials. An experimental work has been proved the importance of using multiple nanoparticles for enhancing electric properties and dielectric strength of insulation materials. The new multi-nanoparticles technique has been depicted the industrial features against individual nanoparticles and traditional industrial materials experimentally; it has been succeeded for enhancing electrical properties with keeping the thermal stability.

Keywords

Polyvinyl chloride Conductance Susceptance Multi-nanoparticles Multi-nanocomposites 

Notes

Acknowledgements

The present work was supported by Nanotechnology Research Center at Aswan University that is established by aided the Science and Technology Development Fund (STDF), Egypt, Grant No: Project ID 505, 2009-2011.

References

  1. 1.
    R.C. Smith, C. Liang, M. Landry, J.K. Nelson, L.S. Schadler, The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Trans. Dielectr. Electr. Insul. 15, 187–196 (2008)CrossRefGoogle Scholar
  2. 2.
    T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12, 914–928 (2008)CrossRefGoogle Scholar
  3. 3.
    C. Calebrese, L. Hui, L.S. Schadler, J.K. Nelson, A review on the importance of nanocomposite processing to enhance electrical insulation. IEEE Trans. Dielectr. Electr. Insul. 18(4), 1189–1193 (2011)CrossRefGoogle Scholar
  4. 4.
    T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669–681 (2005)CrossRefGoogle Scholar
  5. 5.
    S.L. Abd-El Messieh, N.N. Rozik, Dielectric and morphological studies on polyester/nanosilica fume composites. J. Appl. Polym. Sci. 122, 714–721 (2011)CrossRefGoogle Scholar
  6. 6.
    D.M. Panaitescu, Z. Vuluga, P.V. Notingher, C. Nicolae, The effect of poly[styrene-b-(ethylene-co-butylene)-b-styrene] on dielectric, thermal and morphological characteristics of polypropylene/silica nanocomposites. Polym. Eng. Sci. 53, 2081–2092 (2013)Google Scholar
  7. 7.
    M. Praeger, A. S. Vaughan and S. G. Swingler, The breakdown strength and localized structure of polystyrene as a function of nanosilica fill fraction, in International Conference on Solid Dielectrics, pp. 863–866 (2013)Google Scholar
  8. 8.
    K.Y. Lau, A.S. Vaughan, G. Chen, I.L. Hosier, A.F. Holt, K.Y. Ching, On the space charge and DC breakdown behavior of polyethylene/silica nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 21, 340–351 (2014)CrossRefGoogle Scholar
  9. 9.
    J.W. Zha, Z.M. Dang, T. Yang, T. Zhou, H.T. Song, S.T. Li, Advanced dielectric properties of BaTiO3/polyvinylidene-fluoride nanocomposites with sandwich multi-layer structure. IEEE Trans. Dielectr. Electr. Insul. 19(4), 1312–1317 (2012)CrossRefGoogle Scholar
  10. 10.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater Sci. 57, 660–723 (2012)CrossRefGoogle Scholar
  11. 11.
    W. Zhou, S. Qi, C. Tu, H. Zhao, C. Wang, J. Kou, Effect of the particles size of Al2O3 on the properties of filled heat-conductive silicone rubber. J. Appl. Polym. Sci. 104, 1312–1318 (2007)CrossRefGoogle Scholar
  12. 12.
    J.-W. Zha, Z.-M. Dang, W.-K. Li, Y.-H. Zhu, G. Chen, Effect of micro-Si3N4-nano-Al2O3 CO-filled particles on thermal conductivity, dielectric and mechanical properties of silicone rubber composites. IEEE Trans. Dielectr. Electr. Insul. 21(4), 1989–1996 (2014)CrossRefGoogle Scholar
  13. 13.
    K.Y. Lau, A.S. Vaughan, G. Chen, I.L. Hosier, A.F. Holt, On the dielectric response of silica-based polyethylene nanocomposites”. J. Phys. D Appl. Phys. 46, 095303 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Praeger, A.S. Vaughan and S.G. Swingler, A dielectric spectroscopy study of the polystyrene/nanosilica model system, in IEEE International Conference on Solid Dielectrics, pp. 859–862 (2013)Google Scholar
  15. 15.
    T. Tanaka, Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 12, 914–928 (2005)CrossRefGoogle Scholar
  16. 16.
    M.G. Veena, N.M. Renukappa, J.M. Raj, C. Ranganathaiah, K.N. Shivakumar, Characterization of nanosilica-filled epoxy composites for electrical and insulation applications. J. Appl. Polym. Sci. 121, 2752–2760 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Castellon, H.N. Nguyen, S. Agnel, A. Toureille, M. Fréchette, S. Savoie, A. Krivda, L.E. Schmidt, Electrical properties analyzis of micro and nano composite epoxy resin materials. IEEE Trans. Dielectr. Electr. Insul. 18, 651–658 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Peng, J. He, J. Hu, X. Huang, P. Jiang, Influence of functionalized MgO nanoparticles on electrical properties of polyethylene nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation 22(3), 1512–1519 (2015)CrossRefGoogle Scholar
  19. 19.
    I.L. Hosier, M. Praeger, A.F. Holt, A.S. Vaughan, S.G. Swingler, On the effect of functionalizer chain length and water content in polyethylene/silica nanocomposites: part I—dielectric properties and breakdown strength. IEEE Trans. Dielectr. Electr. Insul. 24(3), 1698–1707 (2017)CrossRefGoogle Scholar
  20. 20.
    A. Thabet, Influence of cost-less nanoparticles on electric and dielectric characteristics of polyethylene industrial materials. Int. J. Electr. Eng. Technol. IJEET 4(1), 58–67 (2013)Google Scholar
  21. 21.
    A. Thabet, Experimental investigation on thermal electric and dielectric characterization for polypropylene nanocomposites using cost-fewer nanoparticles. Int. J. Electr. Eng. Technol. IJEET 4(2), 1–12 (2013)Google Scholar
  22. 22.
    A. Thabet, Y.A. Mubarak, Predictable models and experimental measurements for electric properties of polypropylene nanocomposite films. Int. J. Electr. Comput. Eng. IJECE 6(1), 120–129 (2016)Google Scholar
  23. 23.
    A. Thabet, Thermal experimental verification on effects of nanoparticles for enhancing electric and dielectric performance of polyvinyl chloride. J. Int. Meas. Confed. IMEKO 89, 28–33 (2016)Google Scholar
  24. 24.
    A.A. Ebnalwaled, A. Thabet, Controlling the optical constants of PVC nanocomposite films for optoelectronic applications. Synth. Met. J. 220, 374–383 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Thabet, Y.A. Mubarak, Thermal experiment analysis for dielectric characterization of high density polyethylene nanocomposites. Adv. Electr. Electron. Eng. J. 14(3), 295–303 (2016)Google Scholar
  26. 26.
    A. Thabet, Y.A. Mubarak, Experimental enhancement for electric properties of polyethylene nanocomposites under thermal conditions. Adv. Electr. Electron. Eng. J. 15(1), 55–62 (2017)Google Scholar
  27. 27.
    A. Thabet, Theoretical analysis for effects of nanoparticles on dielectric characterization of electrical industrial materials. Electr. Eng. ELEN J. 99(2), 487–493 (2017)CrossRefGoogle Scholar
  28. 28.
    A. Thabet, Y.A. Mubarak, The effect of cost-fewer nanoparticles on the electrical properties of polyvinyl chloride. Electr. Eng. J. 99(2), 625–631 (2017)CrossRefGoogle Scholar
  29. 29.
    A. Thabet, A.A. Ebnalwaled, Improvement of surface energy properties of PVC nanocomposites for enhancing electrical applications. J. Int. Meas. Confed. IMEKO 110, 78–83 (2017)Google Scholar
  30. 30.
    O. Gouda, Y.A. Mobarak, and M. Samir, A Simulation model for calculating the dielectric properties of nano-composite materials and comprehensive interphase approach, in 14th International Middle East Power Systems Conference (MEPCON), Cairo University, Egypt, pp. 151–156 (2010)Google Scholar
  31. 31.
    K.K. Karkkainen, A.H. Sihvola, K.I. Nikoskinen, Effective permittivity of mixtures: numerical validation by the FDTD method. IEEE Trans. Geosci. Remote Sens. 38, 1303–1308 (2000)CrossRefGoogle Scholar
  32. 32.
    M. Todd, F. Shi, Molecular basis of the interphase dielectric properties of microelectronic and optoelectronic packaging materials. IEEE Trans. Compon. Packag. Technol. 26(3), 667–672 (2003)CrossRefGoogle Scholar
  33. 33.
    A. Thabet, N. Salem, Optimizing dielectric characteristics of electrical materials using multi-nanoparticles technique, in IEEE, International Middle East Power System Conference “MEPCON”, 19–21 Dec. Menofia, Egypt, pp. 220–225 (2017)Google Scholar
  34. 34.
    G. Polizos, E. Tuncer, I. Sauers, K.L. More, Properties of a nanodielectric cryogenic resin. Appl Phys. Lett. 96(15), 152903 (2010)CrossRefGoogle Scholar
  35. 35.
    N. Tagami, M. Hyuga, Y. Ohki, T. Tanaka, T. Imai, M. Harada, M. Ochi, Comparison of dielectric properties between epoxy composites with nanosized clay fillers modified by primary amine and tertiary amine. IEEE Dielectr. Electr. Insul. Trans. 17(1), 214–220 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Todd, F. Shi, Characterizing the interphase dielectric constant of polymer composite materials: effect of chemical coupling agents. J. Appl. Phys. 94, 4551–4557 (2003)CrossRefGoogle Scholar
  37. 37.
    Y. Yi, M. Sastry, Analytical approximation of the two dimensional percolation threshold for fields of overlapping ellipses. Phys. Rev. E 66, 066130 (2002)CrossRefGoogle Scholar
  38. 38.
    J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics Chemistry of Sol-Gel Processing (Academic Press, Cambridge, 1990)Google Scholar
  39. 39.
    L. Bois, F. Chassagneux, S. Parola, F. Bessueille, Growth of ordered silver nanoparticles in silica film mesostructured with a triblock copolymer PEO–PPO–PEO. J. Solid State Chem. 182, 1700–1707 (2009)CrossRefGoogle Scholar
  40. 40.
    H.N. Azlinaa, J.N. Hasnidawania, H. Norita and S.N. Surip, Synthesis of SiO2 nanostructures using sol–gel method, in 5th International Science Congress and Exhibition APMAS2015, Lykia, Oludeniz, April 16–19, Vol. 129, pp. 842–844 (2016)Google Scholar
  41. 41.
    B. Reddy, Advances in Nanocomposites—Synthesis (Characterization and Industrial Applications. Intech Open, London, 2011), pp. 323–340. ISBN 978-953-307-165-7CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Electrical Engineering Department, College of EngineeringQassim UniversityBuraydahKingdom of Saudi Arabia
  2. 2.Nanotechnology Research Center, Department of Electrical Engineering, Faculty of Energy EngineeringAswan UniversityAswanEgypt

Personalised recommendations