Advertisement

Performance of Natural Dyes in Dye-Sensitized Solar Cell as Photosensitizer

  • Sujan Kumar DasEmail author
  • Sumon Ganguli
  • Humayun Kabir
  • Jahirul Islam Khandaker
  • Farid Ahmed
Regular Paper
  • 4 Downloads

Abstract

In this research work five types of titanium dioxide (TiO2) nanocrystalline sol–gel paste with three different types of dye have been prepared and layered on Indium Tin-Oxide coated glass to fabricate dye-sensitized solar cells. The dyes extracted from Malabar spinach seeds (MSS), Red spinach and Pomegranate burgs were used as photosensitizer. All the electrical properties investigated by LCR meter were found to be improved with MSS dye but sample with 0.3 M HNO3 (sample-3) exhibited the best electrical properties. The current–voltage characteristics for all the samples showed ideal behavior. The highest maximum power of 176.3 μW and efficiency of 9.23% was found for sample-3 with MSS dye. The smallest crystallite size was found to be 28.82 nm for sample-3 by XRD data which was also supported by the SEM results. Thus, this study reveals that MSS dye has the great potential to be used as photosensitizer.

Graphic Abstract

Keywords

Dye-sensitized Solar cell TiO2 Electrical properties Photosensitizer 

Notes

References

  1. 1.
    M. Gratzel, Photovoltaic and photoelectrochemical conversion of solar energy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 993–1005 (2007).  https://doi.org/10.1098/rsta.2006.1963 CrossRefGoogle Scholar
  2. 2.
    S. Arul, R. ArunKumar, Synthesis and characterization of CuIn0.7Ga0.3Se2 (CIGS) bulk compound and hot wall deposited thin film absorber layer for solar cell applications. Rasayan J. Chem. 9, 278–286 (2016)Google Scholar
  3. 3.
    V.G. Shah, D.B. Wallace, Low-cost solar cell fabrication by drop-on-demand ink-jet printing, in Proceeding IMAPS 37th Annual International Symposium on Microelectronics, pp. 1–6 (2004)Google Scholar
  4. 4.
    S.K. Das, J.M.M. Islam, M. Hasan, H. Kabir, Development of electrically conductive nanocrystalline thin film for optoelectronic applications. Int. Lett. Chem. Phys. Astron. 10, 90–101 (2013).  https://doi.org/10.18052/www.scipress.com/ILCPA.15.90 CrossRefGoogle Scholar
  5. 5.
    C. Zhu, M.J. Panzer, Synthesis of Zn:Cu2O thin films using a single step electrodeposition for photovoltaic applications. ACS Appl. Mater. Interfaces 7, 5624–5628 (2015).  https://doi.org/10.1021/acsami.5b00643 CrossRefGoogle Scholar
  6. 6.
    B. O’Regan, M. Gratzel, A. Low-Cost, High-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).  https://doi.org/10.1038/353737a0 CrossRefGoogle Scholar
  7. 7.
    R. Keshner, M.S. Arya, in Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules (2004). https://www.nrel.gov/docs/fy05osti/36846.pdf
  8. 8.
    P. Wang, B. Wenger, R. Humphry-Baker, J.-E. Moser, J. Teuscher, W. Kantlehner, J. Mezger, E.V. Stoyanov, S.M. Zakeeruddin, M. Grätzel, Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J. Am. Chem. Soc. 127, 6850–6856 (2005).  https://doi.org/10.1021/ja042232u CrossRefGoogle Scholar
  9. 9.
    M. Grätzel, Photoelectrochemical cells. Nature 414, 338–344 (2001).  https://doi.org/10.1038/35104607 CrossRefGoogle Scholar
  10. 10.
    S.A. Haque, E. Palomares, H.M. Upadhyaya, L. Otley, R.J. Potter, A.B. Holmes, J.R. Durrant, Flexible dye sensitised nanocrystalline semiconductor solar cells. Chem. Commun. (2003).  https://doi.org/10.1039/b308529e CrossRefGoogle Scholar
  11. 11.
    U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).  https://doi.org/10.1038/26936 CrossRefGoogle Scholar
  12. 12.
    B. O’Regan, D.T. Schwartz, Solid state photoelectrochemical cells based on dye sensitization, in AIP Conference Proceedings, ed. by R.D. McConnell (AIP, Denver, 1997), pp. 129–136.  https://doi.org/10.1063/1.53472 CrossRefGoogle Scholar
  13. 13.
    V.P.S. Perera, P. Pitigala, P.V.V. Jayaweera, K.M.P. Bandaranayake, K. Tennakone, Dye-sensitized solid-state photovoltaic cells based on dye multilayer-semiconductor nanostructures. J. Phys. Chem. B 107, 13758–13761 (2003).  https://doi.org/10.1021/jp0348979 CrossRefGoogle Scholar
  14. 14.
    D. Wei, Dye sensitized solar cells. Int. J. Mol. Sci. 11, 1103–1113 (2010).  https://doi.org/10.3390/ijms11031103 CrossRefGoogle Scholar
  15. 15.
    Y.-H. Chen, C.-H. Chen, S.-Y. Wu, C.-H. Chen, M.-Y. Hsu, K.-C. Chen, J.-L. He, S. Ito, Y. Chergui, N. Nehaoua, D.E. Mekki, Z. Chen, Q. Tian, M. Tang, J. Hu, S. Ameen, M.S. Akhtar, Y.S. Kim, H.-S. Shin, Y. Jiao, F. Zhang, S. Meng, N. Stem, E.F. Chinaglia, S.G. dos S. Filho, K.E. Jasim, M. Adachi, K. Yoshida, T. Kurata, J. Adachi, K. Tsuchiya, Y. Mori, F. Uchida, M.-R. Kim, S.-H. Park, J.-U. Kim, J.-K. Lee, Y. Kim, D. Lee, H.-G. Yun, B.-S. Bae, Y. Jun, M.G. Kang, L. Dominici, D. Colonna, D. D’Ercole, G. Mincuzzi, R. Riccitelli, F. Michelotti, T. M. Brown, A. Reale, A. Di Carlo, X.-D. Gao, C.-L. Wang, X.-Y. Gan, X.-M. Li, K.-C. Lin, C.-L. Chang, M.J. Griffith, A.J. Mozer, W.A. Vallejo L., C.A. Quiñones S., J.A. Hernandez S., M. Chigane, M. Watanabe, T. Shinagawa, A.P. Uthirakumar, Q. Qiao, E. Stathatos, in Solar Cells—Dye-Sensitized Devices (2011).  https://doi.org/10.5772/1757 Google Scholar
  16. 16.
    Y. Jiao, F. Zhang, S. Meng, Dye sensitized solar cells principles and new design, in Solar Cells Dye Devices (2011).  https://doi.org/10.5772/21393 Google Scholar
  17. 17.
    J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Efficient photodiodes from interpenetrating polymer networks. Nature 376, 498–500 (1995).  https://doi.org/10.1038/376498a0 CrossRefGoogle Scholar
  18. 18.
    P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 79, 126–128 (2001).  https://doi.org/10.1063/1.1384001 CrossRefGoogle Scholar
  19. 19.
    C.J. Brabec, V. Dyakonov, J. Parisi, N.S. Sariciftci, Organic Photovoltaics: Concepts and Realization (Springer, Berlin, 2003).  https://doi.org/10.1007/978-3-662-05187-0 CrossRefGoogle Scholar
  20. 20.
    W.U. Huynh, J.J. Dittmer, A.P. Alivisatos, Hybrid nanorod-polymer solar cells. Science 80, 2425–2427 (2002).  https://doi.org/10.1126/science.1069156 CrossRefGoogle Scholar
  21. 21.
    S. Ito, N.C. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, M. Grätzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. (Camb.) (2006).  https://doi.org/10.1039/b608279c CrossRefGoogle Scholar
  22. 22.
    Y. Wang, C. Zhao, D. Qin, M. Wu, W. Liu, T. Ma, Transparent flexible Pt counter electrodes for high performance dye-sensitized solar cells. J. Mater. Chem. 22, 22155 (2012).  https://doi.org/10.1039/c2jm35348b CrossRefGoogle Scholar
  23. 23.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).  https://doi.org/10.1021/cr900356p CrossRefGoogle Scholar
  24. 24.
    S.G. Hashmi, M. Özkan, J. Halme, S.M. Zakeeruddin, J. Paltakari, M. Grätzel, P.D. Lund, Dye-sensitized solar cells with inkjet-printed dyes. Energy Environ. Sci. 9, 2453–2462 (2016).  https://doi.org/10.1039/c6ee00826g CrossRefGoogle Scholar
  25. 25.
    J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sustain. Energy Rev. 68, 234–246 (2017).  https://doi.org/10.1016/j.rser.2016.09.097 CrossRefGoogle Scholar
  26. 26.
    M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18, 155–162 (2015).  https://doi.org/10.1016/j.mattod.2014.09.001 CrossRefGoogle Scholar
  27. 27.
    T. Oku, N. Kakuta, K. Kobayashi, A. Suzuki, K. Kikuchi, Fabrication and characterization of TiO2-based dye-sensitized solar cells. Prog. Nat. Sci. Mater. Int. 21, 122–126 (2011).  https://doi.org/10.1016/S1002-0071(12)60045-8 CrossRefGoogle Scholar
  28. 28.
    Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45, 638–640 (2006).  https://doi.org/10.1143/jjap.45.l638 CrossRefGoogle Scholar
  29. 29.
    S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B.F.E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014).  https://doi.org/10.1038/nchem.1861 CrossRefGoogle Scholar
  30. 30.
    G. Richhariya, A. Kumar, P. Tekasakul, B. Gupta, Natural dyes for dye sensitized solar cell: a review. Renew. Sustain. Energy Rev. 69, 705–718 (2017).  https://doi.org/10.1016/j.rser.2016.11.198 CrossRefGoogle Scholar
  31. 31.
    Y. Amao, T. Komori, Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode. Biosens. Bioelectron. 19, 843–847 (2004).  https://doi.org/10.1016/j.bios.2003.08.003 CrossRefGoogle Scholar
  32. 32.
    K. Tennakone, G.R.R.A. Kumara, A.R. Kumarasinghe, P.M. Sirimanne, K.G.U. Wijayantha, Efficient photosensitization of nanocrystalline TiO2 films by tannins and related phenolic substances. J. Photochem. Photobiol. A Chem. 94, 217–220 (1996).  https://doi.org/10.1016/1010-6030(95)04222-9 CrossRefGoogle Scholar
  33. 33.
    S.C. Hao, J.H. Wu, Y.F. Huang, J.M. Lin, Natural dyes as photosensitizers for dye-sensitized solar cell. Sol. Energy 80, 209–214 (2006).  https://doi.org/10.1016/j.solener.2005.05.009 CrossRefGoogle Scholar
  34. 34.
    A.S. Polo, N.Y. MurakamiIha, Blue sensitizers for solar cells: natural dyes from Calafate and Jaboticaba. Sol. Energy Mater. Sol. Cells 90, 1936–1944 (2006).  https://doi.org/10.1016/j.solmat.2006.02.006 CrossRefGoogle Scholar
  35. 35.
    C.G. Garcia, A. SartoPolo, N.Y. MurakamiIha, Fruit extracts and ruthenium polypyridinic dyes for sensitization of TiO2 in photoelectrochemical solar cells. J. Photochem. Photobiol. A Chem. 160, 87–91 (2003).  https://doi.org/10.1016/s1010-6030(03)00225-9 CrossRefGoogle Scholar
  36. 36.
    G.P. Smestad, Education and solar conversion: demonstrating electron transfer. Sol. Energy Mater. Sol. Cells 55, 157–178 (1998).  https://doi.org/10.1016/S0927-0248(98)00056-7 CrossRefGoogle Scholar
  37. 37.
    G.R.A. Kumara, S. Kaneko, M. Okuya, B. Onwona-Agyeman, A. Konno, K. Tennakone, Shiso leaf pigments for dye-sensitized solid-state solar cell. Sol. Energy Mater. Sol. Cells 90, 1220–1226 (2006).  https://doi.org/10.1016/j.solmat.2005.07.007 CrossRefGoogle Scholar
  38. 38.
    N.J. Cherepy, G.P. Smestad, M. Grätzel, J.Z. Zhang, Ultrafast electron injection: implications for a photoelectrochemical cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode. J. Phys. Chem. B. 101, 9342–9351 (1997).  https://doi.org/10.1021/jp972197w CrossRefGoogle Scholar
  39. 39.
    M. Grätzel, Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 4, 145–153 (2003).  https://doi.org/10.1016/S1389-5567(03)00026-1 CrossRefGoogle Scholar
  40. 40.
    M. Ryan, Progress in ruthenium complexes for dye sensitised solar cells. Platin. Met. Rev. 53, 216–218 (2009).  https://doi.org/10.1595/147106709X475315 CrossRefGoogle Scholar
  41. 41.
    K. Maabong, C.M. Muiva, P. Monowe, S.T. Sathiaraj, M. Hopkins, L. Nguyen, K. Malungwa, M. Thobega, Natural pigments as photosensitizers for dye-sensitized solar cells with TiO2 thin films. Int. J. Renew. Energy Res. 5, 54–60 (2015)Google Scholar
  42. 42.
    H.J. Kim, Y.T. Bin, S.N. Karthick, K. V. Hemalatha, C.J. Raj, S. Venkatesan, S. Park, G. Vijayakumar, Natural dye extracted from rhododendron species flowers as a photosensitizer in dye sensitized solar cell. Int. J. Electrochem. Sci.8, 6734–6743 (2013). http://www.electrochemsci.org/papers/vol8/80506734.pdf
  43. 43.
    K.H. Park, T.Y. Kim, J.Y. Park, E.M. Jin, S.H. Yim, J.G. Fisher, J.W. Lee, Photochemical properties of dye-sensitized solar cell using mixed natural dyes extracted from Gardenia Jasminoide Ellis. J. Electroanal. Chem. 689, 21–25 (2013).  https://doi.org/10.1016/j.jelechem.2012.11.026 CrossRefGoogle Scholar
  44. 44.
    C.S. Juana Pinanjota, A. Rodríguez, Energy conversion efficiency of genipin-based dye sensitized solar cells, in AIP Conference Proceedings, AIP Publishing (2018), p. 020012.  https://doi.org/10.1063/1.5050364
  45. 45.
    K.H. Park, T.Y. Kim, S. Han, H.S. Ko, S.H. Lee, Y.M. Song, J.H. Kim, J.W. Lee, Light harvesting over a wide range of wavelength using natural dyes of gardenia and cochineal for dye-sensitized solar cells. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 868–873 (2014).  https://doi.org/10.1016/j.saa.2014.03.016 CrossRefGoogle Scholar
  46. 46.
    Y. Li, S.H. Ku, S.M. Chen, M.A. Ali, F.M.A. AlHemaid, Photoelectrochemistry for red cabbage extract as natural dye to develop a dye-sensitized solar cells, Int. J. Electrochem. Sci. 8, 1237–1245 (2013). http://www.electrochemsci.org/papers/vol8/80101237.pdf
  47. 47.
    V. Shanmugam, S. Manoharan, S. Anandan, R. Murugan, Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 104, 35–40 (2013).  https://doi.org/10.1016/j.saa.2012.11.098 CrossRefGoogle Scholar
  48. 48.
    H. Chang, H.M. Wu, T.L. Chen, K.D. Huang, C.S. Jwo, Y.J. Lo, Dye-sensitized solar cell using natural dyes extracted from spinach and ipomoea. J. Alloys Compd. 495, 606–610 (2010).  https://doi.org/10.1016/j.jallcom.2009.10.057 CrossRefGoogle Scholar
  49. 49.
    N.M. Gómez-Ortíz, I.A. Vázquez-Maldonado, A.R. Pérez-Espadas, G.J. Mena-Rejón, J.A. Azamar-Barrios, G. Oskam, Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Sol. Energy Mater. Sol. Cells 94, 40–44 (2010).  https://doi.org/10.1016/j.solmat.2009.05.013 CrossRefGoogle Scholar
  50. 50.
    S.A. Agarkar, R.R. Kulkarni, V.V. Dhas, A.A. Chinchansure, P. Hazra, S.P. Joshi, Isobutrin from Butea Monosperma (flame of the forest): a promising new natural sensitizer belonging to chalcone class. ACS Appl. Mater. Interfaces 3, 2440–2444 (2011).  https://doi.org/10.1021/am200341y CrossRefGoogle Scholar
  51. 51.
    I.C. Maurya, P. Srivastava, L. Bahadur, Dye-sensitized solar cell using extract from petals of male flowers Luffa cylindrica L. as a natural sensitizer. Opt. Mater. (Amst.) 52, 150–156 (2016).  https://doi.org/10.1016/j.optmat.2015.12.016 CrossRefGoogle Scholar
  52. 52.
    R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, Y.M. Irwan, Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC), in: Y. Gagnon, S.O. Jompob Waewsak Thong, A.K. Sangkharak (eds.), Energy Procedia, Elsevier Ltd., Bangkok, pp. 896–902 (2015).  https://doi.org/10.1016/j.egypro.2015.11.584 CrossRefGoogle Scholar
  53. 53.
    D. Ganta, J. Jara, R. Villanueva, Dye-sensitized solar cells using Aloe Vera and Cladode of Cactus extracts as natural sensitizers. Chem. Phys. Lett. 679, 97–101 (2017).  https://doi.org/10.1016/j.cplett.2017.04.094 CrossRefGoogle Scholar
  54. 54.
    M. Hamadanian, J. Safaei-Ghomi, M. Hosseinpour, R. Masoomi, V. Jabbari, Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitized solar cells (DSSCs). Mater. Sci. Semicond. Process. 27, 733–739 (2014).  https://doi.org/10.1016/j.mssp.2014.08.017 CrossRefGoogle Scholar
  55. 55.
    R. Ramanarayanan, P. Nijisha, C.V. Niveditha, S. Sindhu, Natural dyes from red amaranth leaves as light-harvesting pigments for dye-sensitized solar cells. Mater. Res. Bull. 90, 156–161 (2017).  https://doi.org/10.1016/j.materresbull.2017.02.037 CrossRefGoogle Scholar
  56. 56.
    D.D. Pratiwi, F. Nurosyid Kusumandari, A. Supriyanto, R. Suryana, Performance improvement of dye-sensitized solar cells (DSSC) by using dyes mixture from chlorophyll and anthocyanin, in Journal of Physics: Conference Series, IOP, Surakarta, Indonesia p. 012012 (2017).  https://doi.org/10.1088/1742-6596/909/1/012025 Google Scholar
  57. 57.
    M.K. Hossain, M.F. Pervez, M.N.H. Mia, A.A. Mortuza, M.S. Rahaman, M.R. Karim, J.M.M. Islam, F. Ahmed, M.A. Khan, Effect of dye extracting solvents and sensitization time on photovoltaic performance of natural dye sensitized solar cells. Results Phys. 7, 1516–1523 (2017).  https://doi.org/10.1016/j.rinp.2017.04.011 CrossRefGoogle Scholar
  58. 58.
    Keithley, in Application Note Number 2876: Making I–V and C–V Measurements on Solar/Photovoltaic Cells Using the Model 4200-SCS Semiconductor Characterization System (2007)Google Scholar
  59. 59.
    B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley Publishing Co., Reading, 1978)Google Scholar
  60. 60.
    S. Glasstone, Textbook of physical chemistry. J. Am. Chem. Soc. 69, 189–190 (1947).  https://doi.org/10.1021/ja01193a052 CrossRefGoogle Scholar
  61. 61.
    H. Sutrisno, Polymorphic transformation and microstructure characterization of TiO2 phases prepared by the calcination of hydrogen titanates nanoribbons, J. Sains Dasar.1, 12–32 (2012). http://staffnew.uny.ac.id/upload/132011628/penelitian/18-32+Tranform+TiO2.pdf
  62. 62.
    H. Sutrisno Sunarto, Synthesis of TiO2-polycrystalline microspheres and its microstructure at various high temperatures. J. Ceram. Process. Res. 18, 378–384 (2017)Google Scholar
  63. 63.
    M. BenYahia, F. Lemoigno, T. Beuvier, J.Ś. Filhol, M. Richard-Plouet, L. Brohan, M.L. Doublet, Updated references for the structural, electronic, and vibrational properties of TiO2 (B) bulk using first-principles density functional theory calculations. J. Chem. Phys. 130, 204501 (2009).  https://doi.org/10.1063/1.3130674 CrossRefGoogle Scholar
  64. 64.
    B. Huber, A. Brodyanski, M. Scheib, A. Orendorz, C. Ziegler, H. Gnaser, Nanocrystalline anatase TiO2 thin films: preparation and crystallite size-dependent properties. Thin Solid Films 472, 114–124 (2005).  https://doi.org/10.1016/j.tsf.2004.06.120 CrossRefGoogle Scholar
  65. 65.
    H. Choi, E. Stathatos, D.D. Dionysiou, Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol-gel method modified with nonionic surfactants. Thin Solid Films 510, 107–114 (2006).  https://doi.org/10.1016/j.tsf.2005.12.217 CrossRefGoogle Scholar
  66. 66.
    S. DeWolf, A. Descoeudres, Z.C. Holman, C. Ballif, High-efficiency silicon heterojunction solar cells: a review. Green 2, 7–24 (2012).  https://doi.org/10.1515/green-2011-0018 CrossRefGoogle Scholar
  67. 67.
    K.L. Ray, Photovoltaic Cell Efficiency at Elevated Temperatures (Massachusetts Institute of Technology, Cambridge, 2010)Google Scholar
  68. 68.
    L.C. Andreani, A. Bozzola, P. Kowalczewski, M. Liscidini, L. Redorici, Silicon solar cells: toward the efficiency limits. Adv. Phys. (2019).  https://doi.org/10.1080/23746149.2018.1548305 CrossRefGoogle Scholar
  69. 69.
    F. Kabir, M.M.H. Bhuiyan, M.R. Hossain, H. Bashar, M.S. Rahaman, M.S. Manir, S.M. Ullah, S.S. Uddin, M.Z.I. Mollah, R.A. Khan, S. Huque, M.A. Khan, Improvement of efficiency of dye sensitized solar cells by optimizing the combination ratio of natural red and yellow dyes. Optik (Stuttg) 179, 252–258 (2019).  https://doi.org/10.1016/j.ijleo.2018.10.150 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of PhysicsJahangirnagar UniversitySavar, DhakaBangladesh
  2. 2.Department of Applied Chemistry and Chemical EngineeringUniversity of ChittagongChittagongBangladesh

Personalised recommendations