Synthesis and Characterization of Flexible Resistive Humidity Sensors Based on PVA/PEO/CuO Nanocomposites

  • Ahmed HashimEmail author
  • Yahya Al-Khafaji
  • Aseel Hadi
Regular Paper


Synthesis of polyvinyl alcohol (PVA)–polyethylene oxide (PEO)–copper oxide (CuO) nanocomposites and studying their structural and optical properties for humidity sensors applications were investigated. The prepared humidity sensors have lightweight, low cost, flexible and high sensitivity compare with other humidity sensors. The results showed that the nanocomposites have high absorption in UV region. The absorbance of (PVA–PEO) blend increases with increase in CuO nanoparticles concentrations which may be used for solar cell, transistors, diodes and other electronic applications. The optical constants increase while the transmittance and energy gap decrease as CuO nanoparticles concentrations increase. The results of application showed that the (PVA–PEO–CuO) nanocomposites with different copper oxide nanoparticles concentrations have high sensitivity for relative humidity which may be used as sensors for different humidity ranges.


Sensitivity Optical properties Nanocomposites Blend Humidity Copper oxide 



  1. 1.
    L. Chitra, S. Srinivasan, B. Praveenkumar, Characterization of composite metal oxide humidity sensor for oil lubricating system—a review. Int. J. Pure Appl. Math. 118(5), 815–823 (2018)Google Scholar
  2. 2.
    C. Manjula, N. Prakash, S. Arungalai Vendan, N.G. Renganathan, Studies on copper molybdate as humidity sensor. Int. J. TechnoChem Res. 4(1), 7–64 (2018)Google Scholar
  3. 3.
    S.R. Manohara, S.S. Samal, G.E. Rudreshappa, Humidity sensing properties of multiwalled carbon nanotubepolyvinyl alcohol nanocomposite films. Nanosci. Nanotechnol. Asia (2016). CrossRefGoogle Scholar
  4. 4.
    B.C. Yadav, A.K. Srivastava, P. Sharma, Resistance based humidity sensing properties of TiO2. Sens. Transduc. J. 81(7), 1348–1353 (2007)Google Scholar
  5. 5.
    S. Wang, C.-H. Hsiao, S.-J. Chang, K.-T. Lam, K.-H. Wen, S.-J. Young, S.-C. Hung, B.-R. Huang, CuO nanowire-based humidity sensor. IEEE Sens. 12(6), 1884–1888 (2012)Google Scholar
  6. 6.
    M. Ferrández-Rives, Á. Beltrán-Osuna, J. Gómez-Tejedor, J. Gómez Ribelles, Electrospun PVA/bentonite nanocomposites mats fordrug delivery. Materials 10, 1448 (2017)CrossRefGoogle Scholar
  7. 7.
    T.L. da Silva, F.P. de Araujo, E.C. da Silva Filho, M.B. Furtini, J.A. Osajima, Degradation of poly(ethylene oxide) films using crystal violet. Mater. Res. 20, 869–872 (2017)CrossRefGoogle Scholar
  8. 8.
    I.S. Yakubu, Muhammad U and A’isha AM, Humidity sensing study of polyaniline/copper oxide nanocomposites. Int. J. Adv. Acad. Res. Sci. Technol. Eng. 4(5), 49 (2018)Google Scholar
  9. 9.
    S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.J. Young, S.C. Hung, B.R. Huang, CuO nanowire-based humidity sensor. IEEE Sens. J. 12(6), 1884–1888 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Hashim, A. Hadi, Novel pressure sensors made from nanocomposites (biodegradable polymers–metal oxide nanoparticles): fabrication and characterization. Ukrain J Phys 63(8), 754 (2018). CrossRefGoogle Scholar
  11. 11.
    A. Hashim, A. Hadi, Synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukr. J. Phys. 62(12), 1050–1056 (2017). CrossRefGoogle Scholar
  12. 12.
    K.J. Kadhim, I.R. Agool, A. Hashim, Effect of zirconium oxide nanoparticles on dielectric properties of (PVA-PEG-PVP) blend for medical application. J. Adv. Phys. 6(2), 187 (2017). CrossRefGoogle Scholar
  13. 13.
    K.J. Kadhim, I.R. Agool, A. Hashim, Synthesis of (PVA-PEG-PVP-TiO2) nanocomposites for antibacterial application. Mater. Focus 5(5), 436 (2016). CrossRefGoogle Scholar
  14. 14.
    N.H. Al-Garah, F.L. Rashid, A. Hadi, A. Hashim, Synthesis and characterization of novel (organic–inorganic) nanofluids for antibacterial, antifungal and heat transfer applications. J. Bionanosci. 12, 336 (2018). CrossRefGoogle Scholar
  15. 15.
    F.L. Rashid, A. Hadi, N.H. Al-Garah, A. Hashim, Novel phase change materials, MgO nanoparticles, and water based nanofluids for thermal energy storage and biomedical applications. Int. J. Pharmaceut. Phytopharmacol. Res. 8(1), 46 (2018)Google Scholar
  16. 16.
    H. Ahmed, A. Hashim, H.M. Abduljalil, Analysis of structural, electrical and electronic properties of (polymer nanocomposites/silicon carbide) for antibacterial application. Egypt. J. Chem. 62(4), 1167–1176 (2019). CrossRefGoogle Scholar
  17. 17.
    I.R. Agool, K.J. Kadhim, A. Hashim, Synthesis of (PVA-PEG-PVP-ZrO2) nanocomposites for energy release and gamma shielding applications. Int. J. Plast. Technol. 21(2), 444 (2017). CrossRefGoogle Scholar
  18. 18.
    F.L. Rashid, S.M. Talib, A. Hadi, A. Hashim, Novel of thermal energy storage and release: water/(SnO2–TaC) and water/(SnO2–SiC) nanofluids for environmental applications. IOP Conf. Series Mater. Sci. Eng. 454, 012113 (2018). CrossRefGoogle Scholar
  19. 19.
    A. Hadi, F.L. Rashid, H.Q. Hussein, A. Hashim, Novel of water with (CeO2–WC) and (SiC-WC) nanoparticles systems for energy storage and release applications. IOP Conf. Ser. Mater. Sci. Eng. 518(3), 5 (2019). CrossRefGoogle Scholar
  20. 20.
    I.R. Agool, K.J. Kadhim, A. Hashim, Fabrication of new nanocomposites: (PVA-PEG-PVP) blend-zirconium oxide nanoparticles) for humidity sensors. Int. J. Plast. Technol. 21(2), 397 (2017). CrossRefGoogle Scholar
  21. 21.
    S. Hadi, A. Hashim, A. Jewad, Optical properties of (PVA-LiF) composites. Aust. J. Basic Appl. Sci. 5(9), 2192–2195 (2011)Google Scholar
  22. 22.
    A. Hadi, A. Hashim, Development of a new humidity sensor based on (carboxymethyl cellulose–starch) blend with copper oxide nanoparticles. Ukrain. J. Phys. 62(12), 1044 (2017). CrossRefGoogle Scholar
  23. 23.
    A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors. J. Mater. Sci.: Mater. Electron. 29, 11598–11604 (2018). CrossRefGoogle Scholar
  24. 24.
    A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid, Fabrication of novel (biopolymer blend-lead oxide nanoparticles) nanocomposites: structural and optical properties for low cost nuclear radiation shielding. Ukrain. J. Phys. 64(2), 157 (2019). CrossRefGoogle Scholar
  25. 25.
    I.R. Agool, F.S. Mohammed, A. Hashim, The effect of magnesium oxide nanoparticles on the optical and dielectric properties of (PVA-PAA-PVP) blend. Adv. Environ. Biol. 9(11), 1–11 (2015)Google Scholar
  26. 26.
    K.H.H. Al-Attiyah, A. Hashim, S.F. Obaid, Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int. J. Plast. Technol. 23(1), 1–7 (2019). CrossRefGoogle Scholar
  27. 27.
    A.F. Mansour, A. Elfalaky, F. Abdel Maged, Synthesis, characterization and optical properties of PANI/PVA blends. IOSR J. Appl. Phys. 7(4), 37 (2015)Google Scholar
  28. 28.
    A. Hashim, Q. Hadi, Synthesis of novel (polymer blend-ceramics) nanocomposites: structural, optical and electrical properties for humidity sensors. J. Inorg. Organomet. Polym Mater. 28(4), 1394–1401 (2018). CrossRefGoogle Scholar
  29. 29.
    H. Abduljalil, A. Hashim, A. Jewad, The effect of addition titanium dioxide on electrical properties of poly-methyl methacrylate. Eur. J. Sci. Res. 63(2), 231–235 (2011)Google Scholar
  30. 30.
    Z. Al-Ramadhan, A. Hashim, A.J. Kadham Algidsawi, The DC electrical properties of (PVC-Al2O3) composites. AIP Conf. Proc. 1400(1), 180 (2011). CrossRefGoogle Scholar
  31. 31.
    A. Hashim, I.R. Agool, K.J. Kadhim, Novel of (polymer blend-Fe3O4) magnetic nanocomposites: preparation and characterization for thermal energy storage and release, gamma ray shielding, antibacterial activity and humidity sensors applications. J. Mater. Sci.: Mater. Electron. 29(12), 10369–10394 (2018). CrossRefGoogle Scholar
  32. 32.
    A. Hashim, A. Hadi, Novel lead oxide polymer nanocomposites for nuclear radiation shielding applications. Ukrain. J. Phys. 62(11), 978 (2017). CrossRefGoogle Scholar
  33. 33.
    A.J. Kadham, D. Hassan, N. Mohammad, A. Hashim, Fabrication of (polymer blend-magnesium oxide) nanoparticle and studying their optical properties for optoelectronic applications. Bull. Electr. Eng. Inform. 7(1), 28 (2018). CrossRefGoogle Scholar
  34. 34.
    R. Srivastava, Effect of poly ethylene glycol on moisture sensing of copper ferrite nanocomposite. Am. J. Sens. Technol. 3(1), 1–4 (2015)Google Scholar
  35. 35.
    A. Hashim, A. Jassim, Novel of (PVA-ST-PbO2) bio nanocomposites: preparation and properties for humidity sensors and radiation shielding applications. Sens. Lett. 15(12), 1003 (2017). CrossRefGoogle Scholar
  36. 36.
    A. Hashim, A. Jassim, Novel of biodegradable polymers-inorganic nanoparticles: structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. 12, 170 (2018). CrossRefGoogle Scholar
  37. 37.
    V. Jeseentharani, B. Jeyaraj, J. Pragasam, A. Dayalan, K. Seetharamaiah Nagaraja, Humidity sensing properties of CuO, ZnO and NiO composites. Sens. Transd. J. 113(2), 48 (2010)Google Scholar
  38. 38.
    A. Hashim, Z.S. Hamad, Fabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensors. J. Nanostruct. 9(2), 340–348 (2019). CrossRefGoogle Scholar
  39. 39.
    A. Hashim, A. Hadi, Synthesis and characterization of (MgO–Y2O3–CuO) nanocomposites for novel humidity sensor application. Sens. Lett. 15, 858–861 (2017). CrossRefGoogle Scholar
  40. 40.
    H. Abbasian, D. Ghanbari, G. Nabiyouni, Sonochemical-assisted synthesis of copper oxide nanoparticles and its application as humidity sensor. J. Nanostruct. 3, 429 (2013)Google Scholar
  41. 41.
    S. Kotresh, Y.T. Ravikiran, H.G. Raj Prakash, S.C. VijayaKumari, Polyaniline-titanium dioxide composite as humidity sensor at room temperature. Nanosyst. Phys. Chem. Math. 7(4), 732–739 (2016)CrossRefGoogle Scholar
  42. 42.
    W. Chunjie, J. Jie, Y. Wang, Effects of surfactants on performance of ZrO2 humidity sensors. Adv. Comput. Sci. Res. 76, 18–23 (2017)Google Scholar
  43. 43.
    T. Santhaveesuk, K. Siwawongkasem, S. Pommek, S. Choopun, High performance humidity sensor based on ZnO nanoparticles synthesized by co-precipitation method. Appl. Mech. Mater. 848, 99 (2016)CrossRefGoogle Scholar
  44. 44.
    H. Ahmed, H.M. Abduljalil, A. Hashim, Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors. Trans. Electr. Electron. Mater. (2019). CrossRefGoogle Scholar
  45. 45.
    H. Ahmed, H.M. Abduljalil, A. Hashim, Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans. Electr. Electron. Mater. (2019). CrossRefGoogle Scholar
  46. 46.
    A. Hashim, M.A. Habeeb, Synthesis and characterization of polymer blend-CoFe2O4 nanoparticles as a humidity sensors for different temperatures. Trans. Electr. Electron. Mater. (2019). CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Physics, College of Education for Pure SciencesUniversity of BabylonHillahIraq
  2. 2.Department of Chemistry, College of ScienceUniversity of BabylonHillahIraq
  3. 3.Department of Ceramic and Building Materials, College of Materials EngineeringUniversity of BabylonHillahIraq

Personalised recommendations