Fabrication of Bismuth Vanadate (BiVO4) Nanoparticles by a Facile Route

  • M. F. RahmanEmail author
  • M. S. Haque
  • M. Hasan
  • M. A. Hakim
Regular Paper


Monoclinic bismuth vanadate (m-BiVO4) has attracted many researchers as an advanced photocatalyst for hydrogen production via water splitting and degradation of organic contaminants. In this study, pure m-BiVO4 nanoparticles were fabricated by an easy reproducible solid state route at different temperatures (500 °C, 550 °C, 600 °C, 650 °C and 700 °C) for 2 h. The synthesized materials were characterized by X-ray Diffractometer where all the diffraction patterns reveal characteristic peaks corresponding to m-BiVO4 with space group C2/c. Obtained m-BiVO4 particles have the lattice parameters: a = 7.2477 Å, b = 11.6970 Å, c = 5.0900 Å and the volume of the unit cell is 309.23 (106 pm3). Fourier Transform Infrared spectroscopy exhibits formation of Bi–O bond in the prepared nano powders. Ultraviolet–Visible diffuse reflectance spectroscopy suggests that nanostructured BiVO4 particles possess strong energy absorption properties both in visible and ultraviolet region. The particles show red shift of band gap as the calcination temperature rises and possible reasons have been discussed. Energy-dispersive X-ray spectroscopy confirms presence of Bi, V, and O without any contaminant, while particle’s morphology was investigated using Field Emission Scanning Electron Microscope.


Monoclinic bismuth vanadate Solid state reaction Nanoparticles Lattice strains 



The authors would like to thank Department of Glass and Ceramic Engineering, Bangladesh University of Engineering and Technology (BUET) for providing assistance regarding characterization and preparation of the specimen.

Compliance with Ethical Standards

Conflict of interest

There is no conflict of interest in writing and publishing the manuscript.


  1. 1.
    D.W. Chen, A.K. Ray, Appl. Catal. B: Environ. 23, 143–157 (1999)CrossRefGoogle Scholar
  2. 2.
    H. Zhou, D.W. Smith, J. Environ. Eng. Sci 1, 247–264 (2002)CrossRefGoogle Scholar
  3. 3.
    V. Rajalingam, Synthesis and characterization of BiVO4 nanostructured materials: application to photocatalysis. Dissertation, Universit´e du Maine (2014)Google Scholar
  4. 4.
    F.M. Toma, J.K. Cooper, V. Kunzelmann, M.T. McDowell, J. Yu, D.M. Larson, N.J. Borys, C. Abelyan, J.W. Beeman, K. Man, J. Yang, L. Chen, M.R. Shaner, J. Spurgeon, F.A. Houle, K.A. Persson, I.D. Sharp, Nat. Commun. 7, 12012 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Ordon, Functionalized semiconducting oxides based on bismuth vanadate with anchored organic dye molecules for photoactive applications. Dissertation, Université du Maine (2018)Google Scholar
  6. 6.
    M.J. Madiabu, J. Gunlazuardi, AIP Conf. Proc. 2023, 020079 (2018)CrossRefGoogle Scholar
  7. 7.
    A. Fernandez, G. Lassaletta, V.M. Jimenez, A. Justo, A.R. Gonzalez Elipe, J.M. Herrmann, H. Tahiri, Y. Aitichou, Appl. Catal. B: Environ. 7, 49–63 (1995)CrossRefGoogle Scholar
  8. 8.
    C. Minero, E. Pelizzetti, P. Pichat, M. Sega, M. Vincenti, Environ. Sci. Technol. 29, 2226–2234 (1995)CrossRefGoogle Scholar
  9. 9.
    S.S. Wu, H.Q. Cao, S.F. Yin, X.W. Liu, X.R. Zhang, J. Phys. Chem. C 113, 17893–17898 (2009)CrossRefGoogle Scholar
  10. 10.
    L. Gao, L.Q. Jiang, Mater. Chem. Phys. 91, 313–316 (2005)CrossRefGoogle Scholar
  11. 11.
    M.A. Gondal, K. Hayat, M.M. Khaled, S. Ahmed, A.M. Shemsi, Appl. Catal. A 393, 122–129 (2011)CrossRefGoogle Scholar
  12. 12.
    W.Z. Wang, H.L. Xu, W. Zhu, J. Phys. Chem. B 110, 13829–13834 (2006)CrossRefGoogle Scholar
  13. 13.
    K. Rajeshwar, S. Somasundaram, C.R.N. Chenthamarakshan, N.R. de Tacconi, Int. J. Hydrog. Energy 32, 4661–4669 (2007)CrossRefGoogle Scholar
  14. 14.
    M.A.A. Mamun, A.F.M.M. Hossain, M. Hasan, M.M. Rahman, Hydrothermal Synthesis and Characterization of Bismuth Vanadate Photocatalyst, in Proceedings of the 1st International Conference on Engineering Materials and Metallurgical Engineering, Bangladesh Council of Scientific and Industrial Research, Dhaka, 22–24 December 2016Google Scholar
  15. 15.
    H. Cai, L. Cheng, F. Xu, H. Wang, W. Xu, F. Li, R. Soc, Open Sci. 5, 180752 (2018)Google Scholar
  16. 16.
    A. Fujishima, K. Honda, Nature 238(5358), 37–38 (1972)CrossRefGoogle Scholar
  17. 17.
    A. Kudo, K. Ueda, H. Kato, I. Mikami, Cat. Let. 53, 229 (1998)CrossRefGoogle Scholar
  18. 18.
    P.H. Le, N.T. Kien, C.N. Van, Recent Advances in BiVO 4 - and Bi 2 Te 3 -Based Materials for High Efficiency-Energy Applications (Intech Open, London, 2018)CrossRefGoogle Scholar
  19. 19.
    S. Dolic, D. Jovanovic, L. Zur, M. Cincović, M. Ferrari, M. Dramićanin, Synthesis, multifunctional properties and applications of bivo4 nanoparticles (Conference Presentation), in Proceeding of SPIE 10683, Fiber Lasers and Glass Photonics: Materials through Applications, 106831G (23 May 2018)Google Scholar
  20. 20.
    F. Rullens, A. Laschewsky, M. Devillers, Chem. Mater. 18, 771 (2006)CrossRefGoogle Scholar
  21. 21.
    M.F. Rahman, M.S. Haque, M.H. Rizvi, M.A. Matin, M.A. Hakim, M.F. Islam, in Abstracts of the International Conference on Nanotechnology and Condensed Matter Physics, Bangladesh University of Engineering and Technology, Dhaka, 11–12 January 2018Google Scholar
  22. 22.
    M. Noor, M.A.A. Mamun, M.A. Matin, M.F. Islam, S. Haque, F. Rahman, M.N. Hossain, M.A. Hakim, Effect of pH Variation on Structural, Optical and Shape Morphology of BiVO4 Photocatalysts, in 10th International Conference on Electrical and Computer Engineering (IEEE, Dhaka, 20–22 December, 2018).
  23. 23.
    H. Zhao, F. Tian, R. Wang, R. Chen, Rev. Adv. Sci. Eng. 3, 3–27 (2014)CrossRefGoogle Scholar
  24. 24.
    Z. Wang, W. Luo, S. Yan, J. Feng, Z. Zhao, Y. Zhu, Z. Li, Z. Zou, Cryst. Eng. Commun. 13, 6674–6679 (2011)CrossRefGoogle Scholar
  25. 25.
    P. Madhusudan, J. Yu, W. Wang, B. Cheng, G. Liu, Dal. Trans. 41, 14345–14353 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Walsh, Y. Yan, M.N. Huda, M.M. Al-Jassim, S.H. Wei, Chem. Mater. 21, 3 (2009)CrossRefGoogle Scholar
  27. 27.
    Z. Zhao, Z. Li, Z. Zou, Phys. Chem. Chem. Phys. 13, 4746–4753 (2011)CrossRefGoogle Scholar
  28. 28.
    U.M.G. Perez, S.S. Guzman, A.M. de la Cruz, J. Peral, Int. J. Electrochem. Sci. 7, 9622–9632 (2012)Google Scholar
  29. 29.
    D.P. Dubal, K. Jayaramulu, R. Zboril, R.A. Fischer, P.G. Romero, J. Mater. Chem. A 6, 6096 (2018)CrossRefGoogle Scholar
  30. 30.
    T.L. Kim, M.J. Choi, H.W. Jang, Boosting interfacial charge transfer for efficient water-splitting photoelectrodes: progress in bismuth vanadate photoanodes using various strategies. MRS Commun. 8, 3 (2018)CrossRefGoogle Scholar
  31. 31.
    M. Guo, Q. He, W. Wang, J. Wu, W. Wang, J. Wuhan Univ. Technol.-Mater. Sci. Edit. 31, 791 (2016). CrossRefGoogle Scholar
  32. 32.
    M. Peng, J. Shi, Z. Wang, L. Li, Penglong CHEN Improvement of synthesis experiment of bismuth vanadate pigment by pH optimization. Univ. Chem. 33(8), 26–31 (2018)Google Scholar
  33. 33.
    M.V. Malashchonak, E.A. Streltsov, D.A. Kuliomin, A.I. Kulak, A.V. Mazanik, Monoclinic bismuth vanadate band gap determination by photoelectrochemical spectroscopy. Mater. Chem. Phys. (2017). CrossRefGoogle Scholar
  34. 34.
    A.N. Zulkifili, A. Fujiki, S. Kimijima, Appl. Sci. 8, 216 (2018)CrossRefGoogle Scholar
  35. 35.
    S.D. Dolića, D.J. Jovanovića, K. Smitsb, B. Babićc, M.M. Cincovića, S. Porobića, M.D. Dramićanina, Ceram. Int. 44, 17953–17961 (2018)CrossRefGoogle Scholar
  36. 36.
    V. Sivakumar, R. Suresh, K. Giribabu, V. Narayanan, Cogent. Chem. 1, 1074647 (2015)CrossRefGoogle Scholar
  37. 37.
    A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 121(49), 11459–11467 (1999)CrossRefGoogle Scholar
  38. 38.
    S. Khademinia, M. Behzad, H.S. Jahromi, RSC Adv. 5, 24313–24318 (2015)CrossRefGoogle Scholar
  39. 39.
    J. Yu, Y. Zhang, A. Kudo, J. Solid State Chem. 182, 223–228 (2009)CrossRefGoogle Scholar
  40. 40.
    S.M. Thalluri, C.M. Suarez, M. Hussain, S. Hernandez, A. Virga, G. Saracco, N. Russo, Evaluation of the parameters affecting the visible-light-induced photocatalytic activity of monoclinic BiVO4 for water oxidation. Ind. Eng. Chem. Res. 52, 17414–17418 (2013). CrossRefGoogle Scholar
  41. 41.
    Y.K. Kho, W.Y. Teoh, A. Iwase, L. Maedler, A. Kudo, R. Amarl, ACS. Appl. Mater. Interfaces 3(6), 1997–2004 (2011)CrossRefGoogle Scholar
  42. 42.
    C. Ravidhas, A.J. Josephine, P. Sudhagar, A. Devadoss, C. Terashima, K. Nakata, A. Fujishima, A.M.E. Raj, C. Sanjeeviraja, Mater. Sci. Semicond. Process. 30, 343–351 (2015)CrossRefGoogle Scholar
  43. 43.
    Q. Jia, K. Iwashina, A. Kudo, Proc. Natl. Acad. Sci. 109, 11564–11569 (2012)CrossRefGoogle Scholar
  44. 44.
    K. Rajeshwar, N.R. Tacconi, Chem. Soc. Rev. 38, 1984–1998 (2009)CrossRefGoogle Scholar
  45. 45.
    S. Obregón, A. Caballero, G. Colón, Appl. Catal. B: Environ. 117–118, 59–66 (2012)CrossRefGoogle Scholar
  46. 46.
    P.M. Shafi, A.C. Bose, AIP Adv. 5, 057137 (2015)CrossRefGoogle Scholar
  47. 47.
    W. Qin, J.A. Szpunar, Phil. Mag. Lett. 85, 653 (2005)CrossRefGoogle Scholar
  48. 48.
    K. Reimann, R. Wurschum, J. Appl. Phys. 81, 7186 (1997)CrossRefGoogle Scholar
  49. 49.
    T.R. Malow, C.C. Koch, Acta Mater. 45, 2177 (1997)CrossRefGoogle Scholar
  50. 50.
    W. Qin, T. Nagase, Y. Umakoshi, J.A. Szpunar, Philos. Mag. Lett. 88(3), 169–179 (2008)CrossRefGoogle Scholar
  51. 51.
    D.H. Ping, D.X. Li, H.Q. Ye, J. Mater. Sci. Lett. 14, 1536 (1995)CrossRefGoogle Scholar
  52. 52.
    K. Lu, Mater. Sci. Eng. R. 16, 161 (1996)CrossRefGoogle Scholar
  53. 53.
    K. Lu, R. Lück, B. Predel, Mater. Sci. Eng. A. 179–180, 536 (1994)CrossRefGoogle Scholar
  54. 54.
    P.P. Chattopadhyay, P.M.G. Nambissan, S.K. Pabi et al., Phys. Rev. B. 63, 054107 (2001)CrossRefGoogle Scholar
  55. 55.
    W. Qin, J.A. Szpunar, Philos. Mag. Lett. 85(12), 649–656 (2005)CrossRefGoogle Scholar
  56. 56.
    J.W. Christian, The Theory of Transformations in Metals and Alloys, Part 1 (Pergamon Press, Oxford, 2002), pp. 202–203Google Scholar
  57. 57.
    M. Dapiaggi, C.A. Geiger, G. Artioli, Am. Miner. 90, 506 (2005)CrossRefGoogle Scholar
  58. 58.
    R. Venkatesan, S. Velumani, A. Kassiba, Mat. Chem. Phys. 135, 842–848 (2012)CrossRefGoogle Scholar
  59. 59.
    H.D. Telpande, D.V. Parwate, J. Appl. Chem. 8(5), 28–37 (2015)Google Scholar
  60. 60.
    P. Kubelka, F. Munk, EinBeitrag ZurOptik Der Farbanstriche. Zeitschriftfür Technische Physik. 12, 593–601 (1931)Google Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.Department of Glass and Ceramic EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations