Effect of Preparation Routes on the Crystal Purity and Properties of \(\hbox {BiFeO}_{3}\) Nanoparticles

  • M. A. MatinEmail author
  • M. M. Rhaman
  • M. N. Hossain
  • F. A. Mozahid
  • M. A. Hakim
  • M. H. Rizvi
  • M. F. Islam
Regular Paper


Sol–gel as a chemical solution deposition technique is compatible with functional device fabrication technology. Single-phase bismuth ferrite (\(\hbox {BiFeO}_3\)) mutiferroic with its multi-functionality has extensively been studied for a variety of prospective novel device applications. However, the synthesis of \(\hbox {BiFeO}_3\) is confronted with a challenge to produce pure state without any secondary phase. Scarcity of unified process parameters impede justification of best synthesis techniques. In this work, sol–gel methods with and without auto-combustion reactions were used to synthesize bismuth ferrite (\(\hbox {BiFeO}_3\)) nanoparticles. Different techniques UV–Vis–NIR spectroscopy, XRD, EDS, and SEM were used to investigate the effect of preparation routes on the crystal purity and properties of prepared samples. Synthesized nanoparticles were calcined at temperature between 400 and 800\(^{\circ }\)C and an optimal calcination temperature was found to be 600\(^{\circ }\)C. Band-gap was determined by UV–Vis–NIR spectroscopy and found to vary from 1.93 to 2.07 eV. X-ray diffraction (XRD) has confirmed single phase rhombohedral crystal structure with R3c symmetry. Avg crystallite size was found to be higher (40–68 nm) in auto-combustion reaction compared to that of 23–42 nm obtained in sol–gel method without auto-combustion reaction. The band-gap energy was found to reduce with decreasing crystallite size (above the critical size of 10 nm) following Brus’s effective mass model. Induced strain was found to exhibit an inverse relation with crystallite size and displayed substantial reduction in auto-combustion reaction route. The microstructural features were investigated by field emission scanning electronic microscopy and avg particle size was shown to vary from 107 to 197 nm depending on adopted synthesis route. A low reaction temperature (70\(^{\circ }\)C–80\(^{\circ }\)C) without auto-combustion and calcination temperature at \(600^{\circ }\)C were found to be optimal conditions for the preparation of low impurity un-doped bismuth ferrite nanaoparticles.


\(\hbox {BiFeO}_3\) Chemical synthesis Multiferroics Nanoparticle Sol–gel X-ray diffraction 



We highly acknowledge the support given by the Department of Glass and Ceramic Engineering (GCE), BUET while pursuing this research.


  1. 1.
    H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162(1), 317–338 (1994)CrossRefGoogle Scholar
  2. 2.
    C.N.R. Rao, C.R. Serrao, New routes to multiferroics. J. Mater. Chem. 17(47), 4931–4938 (2007)CrossRefGoogle Scholar
  3. 3.
    N.A. Hill, Why are there so few magnetic ferroelectrics? (2000)Google Scholar
  4. 4.
    C.T. Munoz, J.P. Rivera, A. Bezinges, A. Monnier, H. Schmid, Measurement of the quadratic magnetoelectric effect on single crystalline \(\hbox {BiFeO}_{3}\). Jpn. J. Appl. Phys. 24(S2), 1051 (1985)Google Scholar
  5. 5.
    ChSRL Prasad, G. Sreenivasulu, S.R. Kiran, M. Balasubramanian, B.S. Murty, Electrical and magnetic properties of nanocrystalline \(\hbox {BiFeO}_{3}\) prepared by high energy ball milling and microwave sintering. J. Nanosci. Nanotechnol. 11(5), 4097–4102 (2011)Google Scholar
  6. 6.
    J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, \(\hbox {BiFeO}_{3}\): a review on synthesis, doping and crystal structure. Integr Ferroelectr. 126(1), 47–59 (2011)Google Scholar
  7. 7.
    K.L. Yadav, Aliovalent-ion and magnetic field induced phase transition in multiferroic \(BiFe_{1- x}Ti_xO_3\) system. J. Nanosci. Nanotechnol. 11(3), 2682–2686 (2011)Google Scholar
  8. 8.
    M. Valant, A.K. Axelsson, N. Alford, Peculiarities of a solid-state synthesis of multiferroic polycrystalline \(\hbox {BiFeO}_{3}\). Chem. Mater. 19(22), 5431–5436 (2007)Google Scholar
  9. 9.
    J.K. Kim, S.S. Kim, W.J. Kim, Sol–gel synthesis and properties of multiferroic \(\hbox {BiFeO}_{3}\). Mater. Lett. 59(29–30), 4006–4009 (2005)Google Scholar
  10. 10.
    I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (\(BaFe_{12}O_{19}\)) synthesized by sol–gel auto-combustion route. J. Alloy. Compd. 547, 118–125 (2013)Google Scholar
  11. 11.
    I. Szafraniak, M. Połomska, B. Hilczer, A. Pietraszko, Characterization of \(\hbox {BiFeO}_{3}\) nanopowder obtained by mechanochemical synthesis. J. Eur. Ceram. Soc. 27(13–15), 4399–4402 (2007)Google Scholar
  12. 12.
    E.A.V. Ferri, I.A. Santos, E. Radovanovic, R. Bonzanini, E.M. Girotto, Chemical characterization of \(\hbox {BiFeO}_{3}\) obtained by pechini method. J. Braz. Chem. Soc. 19(6), 1153–1157 (2008)Google Scholar
  13. 13.
    W. Luo, D. Wang, X. Peng, F. Wang, Microwave synthesis and phase transitions in nanoscale \(\hbox {BiFeO}_{3}\). J. Sol–Gel. Sci. Technol. 51(1), 53–57 (2009)Google Scholar
  14. 14.
    E.C. Aguiar, M.A. Ramirez, F. Moura, J.A. Varela, E. Longo, A.Z. Simoes, Low-temperature synthesis of nanosized bismuthferrite by the soft chemical method. Ceram. Int. 39, 13–20 (2013)CrossRefGoogle Scholar
  15. 15.
    J.L.O. Quinonez, D. Diaz, I.Z. Dube, H.A. Santamaria, O.I. Betancourt, P.S. Jacinto, and title = N. N. EtzanaGoogle Scholar
  16. 16.
    G. Clarke, A. Rogov, S. McCarthy, L. Bonacina, Y. Gunko, C. Galez, R.L. Dantec, Y. Volkov, Y. Mugnier, A.P. Mello, Preparation from a revisited wet chemical route of phase-pure, monocrystalline and SHG-efficient \(\hbox {BiFeO}_{3}\) nanoparticles for harmonic bio-imaging. Sci. Rep. 8, 10473 (2018)Google Scholar
  17. 17.
    P. Suresh, S. Srinath, Effect of synthesis route on the multiferroic properties of \(\hbox {BiFeO}_{3}\): a comparative study between solid state and solgel methods. J. Alloy. Compd. 649, 843–850 (2015)Google Scholar
  18. 18.
    M. Popa, D. Crespo, J.M.C. Moreno, S. Preda, V. Fruth, Synthesis and structural characterization of single-phase \(\hbox {BiFeO}_{3}\) powders from a polymeric precursor. J. Am. Ceram. Soc. 90, 2723–2727 (2007)Google Scholar
  19. 19.
    K.C. Hegde, M.S. Patil, T. Rattan, S.T. Aruna, Chemistry of nanocrystalline oxide materials. Combustion synthesis, properties and applications. British Library Cataloguing-in-Publication Data p. 182 (2008)Google Scholar
  20. 20.
    M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Ferroelectricity in a pure \(\hbox {BiFeO}_{3}\) ceramic. Appl. Phys. Lett. 76, 2764–2766 (2000)Google Scholar
  21. 21.
    S.M. Selbach, M. Einarsrud, T. Grande, On the thermodynamic stability of \(\hbox {BiFeO}_{3}\). Chem. Mater. 21, 169–173 (2009)Google Scholar
  22. 22.
    G.R. George, J. Silva, R. Castañeda, D. Lardizábal, O.A. Graeve, L. Fuentes, A.R. Rojas, Modifications in the rhombohedral degree of distortion and magnetic properties of Ba-doped \(\hbox {BiFeO}_{3}\) as a function of synthesis methodology. Mater. Chem. Phys. 146(1–2), 73–81 (2014)Google Scholar
  23. 23.
    M.M. Rhaman, M.A. Matin, M.N. Hossain, F.A. Mozahid, M.A. Hakim, M.H. Rizvi, M.F. Islam, Bandgap tuning of Sm and Co co-doped BFO nanoparticles for photovoltaic application. J. Electron. Mater. 47, 6954–58 (2018)CrossRefGoogle Scholar
  24. 24.
    M.M. Rhaman, M.A. Matin, M.N. Hossain, F.A. Mozahid, M.A. Hakim, M.F. Islam, Bandgap engineering of cobalt-doped bismuth ferrite nanoparticles for photovoltaic applications. Bull. Mater. Sci. 42, 190 (2019)CrossRefGoogle Scholar
  25. 25.
    P.S.V. Mocherla, C. Karthik, R. Ubic, M.S.R. Rao, C. Sudakar, Tunable bandgap in \(BiFeO_3\) nanoparticles: the role of microstrain and oxygen defects. Appl. Phys. Lett. 103, 022910 (2013)Google Scholar
  26. 26.
    J. Kaczkowski, M.P. Michalska, A. Jezierski, Electronic structure of \(\hbox {BiFeO}_{3}\) in different crystal phases. Acta Phys. Pol. A 127, 266–268 (2015)Google Scholar
  27. 27.
    H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.H. Tseng, Size dependency of nanocrystalline \(\text{ TiO}_2\) on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B 68, 1–11 (2006)Google Scholar
  28. 28.
    M. Hasan, M.A. Basith, M.A. Zubair, M.S. Hossain, R. Mahbub, M.A. Hakim, M.F. Islam, Saturation magnetization and band gap tuning in \(\text{ BiFeO}_3\) nanoparticles via co-substitution of Gd and Mn. J. Alloy. Compd. 687, 701–706 (2016)Google Scholar
  29. 29.
    I.S. Elashmawi, A.M. Abdelghany, N.A. Hakeem, Quantum confinement effect of CdS nanoparticles dispersed within PVP/PVA nanocomposites. J. Mater. Sci.: Mater. Electron. 24, 2956–61 (2013)Google Scholar
  30. 30.
    C.S. Tu, C.S. Chen, P.Y. Chen, H.H. Wei, V.H. Schmidta, C.Y. Lin, J. Anthoniappen, J.M. Lee, Enhanced photovoltaic effects in A-site samarium doped \(\hbox {BiFeO}_{3}\) ceramics: the roles of domain structure and electronic state. J. Eur. Ceram. Soc. 36, 1149–57 (2016)Google Scholar
  31. 31.
    K.H. Santosh, B.M. Quinn, A.J. Bard, Electrochemistry of CdS nanoparticles: a correlation between optical and electrochemical band gaps. J. Am. Chem. Soc. 123, 8860–8861 (2001)CrossRefGoogle Scholar
  32. 32.
    K. Koci, L. Obalova, L. Matjova, D. Placha, Z. Lacny, J. Jirkovsky, O. Solcova, Effect of \(\text{ TiO}_2\) particle size on the photocatalytic reduction of \(\text{ CO}_2\). Appl. Catal. B 89, 494–502 (2009)Google Scholar
  33. 33.
    L. Brus, Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984)CrossRefGoogle Scholar
  34. 34.
    L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Chem. Phys. 90, 2555–2560 (1986)CrossRefGoogle Scholar
  35. 35.
    M. Hasan, M.F. Islam, R. Mahbub, M.S. Hossain, M.A. Hakim, A soft chemical route to the synthesis of \(\hbox {BiFeO}_{3}\) nanoparticles with enhanced magnetization. Mater. Res. Bull. 73, 179–186 (2016)Google Scholar
  36. 36.
    R. Das, K. Mandal, Magnetic, ferroelectric and magnetoelectric properties of Ba-doped \(\hbox {BiFeO}_{3}\). J. Magn. Magn. Mater. 324, 1913–1918 (2012)Google Scholar
  37. 37.
    S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Size-dependent properties of multiferroic \(\hbox {BiFeO}_{3}\) nanoparticles. Chem. Mater. 19, 6478–6484 (2007)Google Scholar
  38. 38.
    T. Yan, Z.G. Shen, W.W. Zhang, J.F. Chen, Size dependence on the ferroelectric transition of nanosized \(\text{ BaTiO}_3\) particles. Mater. Chem. Phys. 98, 450–455 (2006)Google Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  • M. A. Matin
    • 1
    Email author
  • M. M. Rhaman
    • 1
    • 2
  • M. N. Hossain
    • 1
  • F. A. Mozahid
    • 1
  • M. A. Hakim
    • 1
  • M. H. Rizvi
    • 1
  • M. F. Islam
    • 1
  1. 1.Department of Glass and Ceramic EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Department of Electrical and Electronic EngineeringAhsanullah University Science and TechnologyDhakaBangladesh

Personalised recommendations