Investigating Undoped HfO2 as Ferroelectric Oxide in Leaky and Non-Leaky FE–DE Heterostructure

  • Bhaskar AwadhiyaEmail author
  • Pravin N. Kondekar
  • Ashvinee Deo Meshram
Regular Paper


In this paper, we have investigated non-leaky and leaky FE–DE heterostructure with undoped HfO2 and Zr doped HfO2 as a ferroelectric material. Use of undoped HfO2 in place of Zr doped HfO2 as a ferroelectric material will ease the deposition process and simplify the processing steps, as ferroelectricity in undoped HfO2 can be obtained without introduction of dopant elements. This replacement of ferroelectric oxide enhances the performance of heterostructure in terms of absolute voltage amplification (\(V_{D} > V_{S}\)). Undoped HfO2 provides higher magnitude voltage amplification as compared to Zr doped HfO2 although the range to voltage amplification is reduced.


Lead zirconium titnate (PZT) Ferroelectric (FE) Dielectric (DE) Paraelectric (PE) Landau–Khalatnikov (LK) Physical vapor deposition (PVD) Chemical vapor deposition (CVD) 



  1. 1.
    S. H. Shin, M. Masuduzzaman, M. A. Wahab, K. Maize, J. J. Gu, M. Si, A. Shakouri, P. D. Ye, M. A. Alam, Direct observation of self-heating in III–V gate-all-around nanowire MOSFETs, in 2014 IEEE International Electron Devices Meeting, 2014, pp. 20.3.1–20.3.4.
  2. 2.
    M.A. Wahab, S. Shin, M.A. Alam, 3D modeling of spatio-temporal heat-transport in III-V gate-all-around transistors allows accurate estimation and optimization of nanowire temperature. IEEE Trans. Electron Devices 62(11), 3595–3604 (2015). CrossRefGoogle Scholar
  3. 3.
    N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N.Y. Park, G.B. Stephenson, I. Stolitchnov, A.K. Taganstev, D.V. Taylor, T. Yamada, S. Streiffer, Ferroelectric thin films: review of materials, properties, and applications. J. Appl. Phys. 100(5), 51606 (2006)CrossRefGoogle Scholar
  4. 4.
    B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, Q.M. Zhang, Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321(5890), 821–823 (2008). CrossRefGoogle Scholar
  5. 5.
    S.-G. Lu, Q. Zhang, Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21(19), 1983–1987 (2009). CrossRefGoogle Scholar
  6. 6.
    U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M.I. Popovici, S.V. Kalinin, T. Mikolajick, Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn. J. Appl. Phys. 53(8S1), 08LE02 (2014). CrossRefGoogle Scholar
  7. 7.
    T.S. Boscke, St. Teichert, D. Brauhaus, J. Muller, U. Schroder, U. Bottger, T. Mikolajick, Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 99(11), 112904 (2011). CrossRefGoogle Scholar
  8. 8.
    J. Muller, S. Knebel, D. Brauhaus, U. Schroder, Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 100(8), 82905 (2012). CrossRefGoogle Scholar
  9. 9.
    D. Zhou, J. Xu, Q. Lu, Y. Guan, F. Cao, X. Dong, J. Muller, T. Schenk, U. Schroder, Wake-up effects in Si-doped hafnium oxide ferroelectric thin films. Appl. Phys. Lett. 103(19), 192904 (2013). CrossRefGoogle Scholar
  10. 10.
    E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A.P. Graham, T. Melde, U. Schroder, T. Mikolajick, Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films. Thin Solid Films 533, 88–92 (2013). CrossRefGoogle Scholar
  11. 11.
    P.D. Lomenzo, P. Zhao, Q. Takmeel, S. Moghaddam, T. Nishida, M. Nelson, C.M. Fancher, E.D. Grimley, X. Sang, J.M. Lebeau, J.L. Jones, Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 32(3), 03D123 (2014). Google Scholar
  12. 12.
    J. Muller, T.S. Boscke, D. Brauhaus, U. Schroder, U. Bottger, J. Sundqvist, P. Kucher, T. Mikolajick, L. Frey, Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl. Phys. Lett. 99(11), 112901 (2011). CrossRefGoogle Scholar
  13. 13.
    J. Muller, T.S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick, Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 12(8), 4318–4323 (2012). CrossRefGoogle Scholar
  14. 14.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, H.K. Kim, C.S. Hwang, Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes. Appl. Phys. Lett. 102(11), 112914 (2013). CrossRefGoogle Scholar
  15. 15.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, C.S. Hwang, Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102(24), 242905 (2013). CrossRefGoogle Scholar
  16. 16.
    M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, C.S. Hwang, The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl. Phys. Lett. 104(7), 72901 (2014). CrossRefGoogle Scholar
  17. 17.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Jeon, T. Moon, C.S. Hwang, Ferroelectric properties and switching endurance of Hf0.5Zr0.5O2 films on TiN bottom and TiN or RuO2 top electrodes. Phys. Status Solidi Rapid Res. Lett. 8(6), 532–535 (2014). CrossRefGoogle Scholar
  18. 18.
    M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, K.D. Kim, C.S. Hwang, Study on the degradation mechanism of the ferroelectric properties of thin Hf0.5Zr0.5O2 films on TiN and Ir electrodes. Appl. Phys. Lett. 105(7), 72902 (2014). CrossRefGoogle Scholar
  19. 19.
    S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, T. Mikolajick, Incipient ferroelectricity in al-doped HfO2 thin films. Adv. Funct. Mater. 22(11), 2412–2417 (2012). CrossRefGoogle Scholar
  20. 20.
    P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, J. Müller, Ferroelectric deep trench capacitors based on Al:HfO2 for 3D nonvolatile memory applications, in 2014 IEEE 6th International Memory Workshop (IMW), 2014, pp. 1–4.
  21. 21.
    J. Muller, U. Schroder, T.S. Boscke, I. Muller, U. Bottger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kucher, T. Mikolajick, L. Frey, Ferroelectricity in yttrium-doped hafnium oxide. J. Appl. Phys. 110(11), 114113 (2011). CrossRefGoogle Scholar
  22. 22.
    T. Olse, U. Schroder, S. Muller, A. Krause, D. Martin, A. Singh, J. Müller, M. Geidel, T. Mikolajick, Cosputtering yttrium into hafnium oxide thin films to produce ferroelectric properties. Appl. Phys. Lett. 101(8), 82905 (2012). CrossRefGoogle Scholar
  23. 23.
    S. Mueller, C. Adelmann, A. Singh, S. Van Elshocht, U. Schroeder, T. Mikolajick, Ferroelectricity in Gd-doped HfO2 thin films. ECS J. Solid State Sci. Technol. 1(6), N123–N126 (2012). CrossRefGoogle Scholar
  24. 24.
    T. Schenk, S. Mueller, U. Schroeder, R. Materlik, A. Kersch, M. Popovici, C. Adelmann, S. V. Elshocht, T. Mikolajick, Strontium doped hafnium oxide thin films: wide process window for ferroelectric memories, in 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2013, pp. 260–263.
  25. 25.
    J. Muller, T. S. Boscke, S. Muller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T. M. Arruda, S. V. Kalinin, T. Schlosser, R. Boschke, R. van Bentum, U. Schroder, T. Mikolajick, Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories, in 2013 IEEE International Electron Devices Meeting, 2013, pp. 10.8.1–10.8.4.
  26. 26.
    P. Polakowski, J. Muller, Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 106(23), 232905 (2015). CrossRefGoogle Scholar
  27. 27.
    K.D. Kim, M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, Y.H. Lee, S.D. Hyun, T. Gwon, C.S. Hwang, Ferroelectricity in undoped-HfO2 thin films induced by deposition temperature control during atomic layer deposition. J. Mater. Chem. C 4(28), 6864–6872 (2016). CrossRefGoogle Scholar
  28. 28.
    A.I. Khan, U. Radhakrishna, K. Chatterjee, S. Salahuddin, D.A. Antoniadis, Negative capacitance behavior in a leaky ferroelectric. IEEE Trans. Electron Devices 63(11), 4416–4422 (2016). CrossRefGoogle Scholar
  29. 29.
    M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, C.S. Hwang, Ferroelectricity and antiferroelectricity of doped thin HfO2 -based films. Adv. Mater. 27(11), 1811–1831 (2015). CrossRefGoogle Scholar
  30. 30.
    A.I. Khan, U. Radhakrishna, S. Salahuddin, D. Antoniadis, Work function engineering for performance improvement in leaky negative capacitance FETs. IEEE Electron Device Lett. 38(9), 1335–1338 (2017). CrossRefGoogle Scholar
  31. 31.
    T. Ando, N.D. Sathaye, K.V.R.M. Murali, E.A. Cartier, On the electron and hole tunneling in a HfO2 gate stack with extreme interfacial-layer scaling. IEEE Electron Device Lett. 32(7), 865–867 (2011). CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.PDPM-Indian Institute of Information Technology, Design and Manufacturing JabalpurJabalpurIndia

Personalised recommendations