Advertisement

Synthesis of Microcrystalline LiNaCaLa(MoO4)3:Yb3+/Ho3+ Upconversion Phosphors and Effect of Li+ on Their Spectroscopic Properties

  • Chang Sung Lim
Regular Paper
  • 8 Downloads

Abstract

Microwave sol–gel (MSG) based yellow phosphors of LiNaCaLa(MoO4)3 quadruple molybdate with variations of LixNa1−x (x = 0.05, 0.1, 0.2, 0.3, 0.4) under the constant doping amount of Yb3+ = 0.45, Ho3+ = 0.05 were successfully fabricated, and the effect of Li+ of their spectroscopic characteristics were investigated. Under excitation derived from 980 nm, the final particles led to the formation of yellow emissions, which were resulted from the transitions of Ho3+ from the 5S2/5F4 → 5I8 in the green emission area, as well as from the 5F5 → 5I8 in the red emission area. The incorporation of Li+ ions led to the local symmetry distortion around the cations in the substituted crystal structure by the Yb3+ and Ho3+ ions, and further increased the UC transition probabilities in the quadruple molybdate of LixNa1−xCaLa0.5(MoO4)3:\( {\text{Yb}}^{3 + }_{0.45} /{\text{Ho}}^{3 + }_{0.05} \). The optimal condition was resulted from the composition of Li0.3Na0.7CaLa0.5(MoO4)3:\( {\text{Yb}}^{3 + }_{0.45} /{\text{Ho}}^{3 + }_{0.05} \) for the yellow emitting diode based on the UC emissions and the chromaticity coordinates of CIE.

Keywords

Yellow phosphor Quadrable molybdate Microwave sol–gel Spectroscopic properties 

Notes

Acknowledgments

This study was supported by the Research Program through the Campus Research Foundation funded by Hanseo University in 2018 (181Yunghap08).

References

  1. 1.
    M.V. DaCosta, S. Doughan, Y. Han, U.J. Krull, Anal. Chim. Acta 832, 1 (2014).  https://doi.org/10.1016/j.aca.2014.04.030 CrossRefGoogle Scholar
  2. 2.
    M. Lin, Y. Zho, S.Q. Wang, M. Liu, Z.F. Duan, Y.M. Chen, F. Li, F. Xu, T.J. Lu, Biotechnol. Adv. 30, 1551 (2012).  https://doi.org/10.1016/j.biotechadv.2012.04.009 CrossRefGoogle Scholar
  3. 3.
    M. Wang, G. Abbineni, A. Clevenger, C. Mao, S. Xu, Nanomed.: Nanotech. Biol. Med. 7, 710 (2011)CrossRefGoogle Scholar
  4. 4.
    C.S. Lim, A. Aleksandrovsky, M. Molokeev, A. Oreshonkov, V. Atuchin, Phys. Chem. Chem. Phys. 17, 19278 (2015).  https://doi.org/10.1039/C5CP03054D CrossRefGoogle Scholar
  5. 5.
  6. 6.
    L. Li, L. Liu, W. Zi, H. Yu, S. Gan, G. Ji, H. Zou, X. Xu, J. Lumin. 143, 14 (2013).  https://doi.org/10.1016/j.jlumin.2013.04.031 CrossRefGoogle Scholar
  7. 7.
    C. Ming, F. Song, L. Yan, Opt. Commun. 286, 217 (2013).  https://doi.org/10.1016/j.optcom.2012.08.095 CrossRefGoogle Scholar
  8. 8.
    N. Xue, X. Fan, Z. Wang, M. Wang, J. Phys. Chem. Sol. 69, 1891 (2008).  https://doi.org/10.1016/j.jpcs.2008.01.015 CrossRefGoogle Scholar
  9. 9.
    Z. Shan, D. Chen, Y. Yu, P. Huang, F. Weng, H. Lin, Y. Wang, Mater. Res. Bull. 45, 1017 (2010).  https://doi.org/10.1016/j.materresbull.2010.04.004 CrossRefGoogle Scholar
  10. 10.
    W. Liu, J. Sun, X. Li, J. Zhang, Y. Tian, S. Fu, H. Zhong, T. Liu, L. Cheng, H. Zhong, H. Xia, B. Dong, R. Hua, X. Zhang, B. Chen, Opt. Mater. 35, 1487 (2013).  https://doi.org/10.1016/j.optmat.2013.03.008 CrossRefGoogle Scholar
  11. 11.
    W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, W. Cao, Sensors Actuators B: Chem. 188, 1096 (2013)CrossRefGoogle Scholar
  12. 12.
    J. Tang, C. Cheng, Y. Chen, Y. Huang, J. Alloys Compd. 609, 268 (2014).  https://doi.org/10.1016/j.jallcom.2014.04.134 CrossRefGoogle Scholar
  13. 13.
    W. Zhang, J. Li, Y. Wang, J. Long, K. Qiu, J. Alloys Compd. 635, 16 (2015).  https://doi.org/10.1016/j.jallcom.2015.02.106 CrossRefGoogle Scholar
  14. 14.
    F. Mo, L. Zhou, Q. Pang, F. Gong, Z. Liang, Ceram. Int. 38, 6289 (2012).  https://doi.org/10.1016/j.ceramint.2012.04.084 CrossRefGoogle Scholar
  15. 15.
    G. Li, S. Lan, L. Li, M. Li, W. Bao, H. Zou, X. Xu, S. Gan, J. Alloys Compd. 513, 145 (2012).  https://doi.org/10.1016/j.jallcom.2011.10.008 CrossRefGoogle Scholar
  16. 16.
    J. Liao, H. Huang, H. You, X. Qiu, Y. Li, B. Qui, H.R. Wen, Mater. Res. Bull. 45, 1145 (2010).  https://doi.org/10.1016/j.materresbull.2010.05.027 CrossRefGoogle Scholar
  17. 17.
    F.B. Cao, L.S. Li, Y.W. Tian, X.R. Wu, Opt. Laser Technol. 55, 6 (2014).  https://doi.org/10.1016/j.optlastec.2013.06.016 CrossRefGoogle Scholar
  18. 18.
    G.M. Kuz’micheva, D.A. Lis, K.A. Subbotin, V.B. Rybakov, E.V. Zharikov, J. Cryst. Growth 275, e1835 (2005)CrossRefGoogle Scholar
  19. 19.
    X. Lu, Z. You, J. Li, Z. Zhu, G. Jia, B. Wu, C. Tu, J. Alloys Compd. 458, 462 (2008).  https://doi.org/10.1016/j.jallcom.2007.04.010 CrossRefGoogle Scholar
  20. 20.
    X. Li, Z. Lin, L. Zhang, G. Wang, J. Cryst. Growth 290, 670 (2006).  https://doi.org/10.1016/j.jcrysgro.2006.02.005 CrossRefGoogle Scholar
  21. 21.
    Y.K. Voron’ko, K.A. Subbotin, V.E. Shukshin, D.A. Lis, S.N. Ushakov, A.V. Popov, E.V. Zharikov, Opt. Mater. 29, 246 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Lin, X. Yan, X. Wang, J. Solid State Chem. 204, 266 (2013).  https://doi.org/10.1016/j.jssc.2013.06.020 CrossRefGoogle Scholar
  23. 23.
    G. Li, L. Li, M. Li, W. Bao, Y. Song, S. Gan, H. Zou, X. Xu, J. Alloys Compd. 550, 1 (2013).  https://doi.org/10.1016/j.jallcom.2012.09.125 CrossRefGoogle Scholar
  24. 24.
    Y. Huang, L. Zhou, L. Yang, Z. Tang, Opt. Mater. 33, 777 (2011).  https://doi.org/10.1016/j.optmat.2010.12.015 CrossRefGoogle Scholar
  25. 25.
    L. Li, W. Zi, G. Li, S. Lan, G. Ji, S. Gan, H. Zou, X. Xu, J. Solid State Chem. 191, 175 (2012).  https://doi.org/10.1016/j.jssc.2012.03.003 CrossRefGoogle Scholar
  26. 26.
    Y. Tian, B. Chen, B. Tian, J. Sun, X. Li, J. Zhang, L. Cheng, H. Zhong, H. Zhong, Q. Meng, R. Hua, Phys. B 407, 2556 (2012).  https://doi.org/10.1016/j.physb.2012.03.066 CrossRefGoogle Scholar
  27. 27.
    J. Zhang, X. Wang, X. Zhang, X. Zhao, X. Liu, L. Peng, Inorg. Chem. Commun. 14, 1723 (2011).  https://doi.org/10.1016/j.inoche.2011.07.015 CrossRefGoogle Scholar
  28. 28.
    S.W. Park, B.K. Moon, B.C. Choi, J.H. Jeong, J.S. Bae, K.H. Kim, Curr. Appl. Phys. 12, S150 (2012)CrossRefGoogle Scholar
  29. 29.
    C.S. Lim, Mater. Res. Bull. 47, 4220 (2012).  https://doi.org/10.1016/j.materresbull.2012.09.029 CrossRefGoogle Scholar
  30. 30.
    C.S. Lim, Mater. Chem. Phys. 131, 714 (2012).  https://doi.org/10.1016/j.matchemphys.2011.10.039 CrossRefGoogle Scholar
  31. 31.
    C.S. Lim, Infrared Phys. Technol. 67, 371 (2014).  https://doi.org/10.1016/j.infrared.2014.08.018 CrossRefGoogle Scholar
  32. 32.
    C.S. Lim, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, D.A. Ikonnikov, V.V. Atuchin, Dalton Trans. 45, 15541 (2016)CrossRefGoogle Scholar
  33. 33.
    Q. Cheng, J. Sui, W. Cai, Nanoscale 4, 779 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Bai, Y. Wang, K. Yang, X. Zhang, Y. Song, C.H. Wang, Opt. Commun. 281, 5448 (2008)CrossRefGoogle Scholar
  35. 35.
    H. Guo, N. Dong, M. Yin, W. Zhang, L. Lou, S. Xia, J. Phys. Chem. B 108, 19205 (2004).  https://doi.org/10.1021/jp048072q CrossRefGoogle Scholar
  36. 36.
  37. 37.
    C.S. Lim, J. Phys. Chem. Solids 76, 65 (2015)CrossRefGoogle Scholar
  38. 38.
    A.M. Abakumov, V.A. Morozov, A.A. Tsirlin, J. Verbeeck, J. Hadermann, Inorg. Chem. 53, 9407 (2014).  https://doi.org/10.1021/ic5015412 CrossRefGoogle Scholar
  39. 39.
    V.A. Morozov, A. Bertha, K.W. Meert, S. Van Rompaey, D. Batuk, G.T. Martinez, S. Van Aert, P.F. Smet, M.V. Raskina, D. Poelman, A.M. Abakumov, J. Hadermann, Chem. Mater. 25, 4387 (2013).  https://doi.org/10.1021/cm402729r CrossRefGoogle Scholar
  40. 40.
    V.A. Morozov, A.V. Mironov, B.I. Lazoryak, E.G. Khaikina, O.M. Basovich, M.D. Rossell, G.V. Tendeloo, J. Solid State Chem. 179, 1183 (2006).  https://doi.org/10.1016/j.jssc.2005.12.041 CrossRefGoogle Scholar
  41. 41.
    C.S. Lim, V.V. Atuchin, A.S. Aleksandrovsky, M.S. Molokeev, A.S. Oreshonkov, J. Alloys Compd. 695, 737 (2017).  https://doi.org/10.1016/j.jallcom.2016.06.134 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Department of Aerospace Advanced Materials and Chemical EngineeringHanseo UniversitySeosanKorea

Personalised recommendations